首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sensitivity-corrected multiple-aliquot regenerative-dose (MAR) protocol provides a reliable approach for fine-grained quartz optically stimulated luminescence (OSL) dating. For reliable estimation of the equivalent dose (De), we investigated certain basic experimental parameters in the fine-grained quartz MAR OSL dating of Chinese loess. (1) For suitable bleaching of the natural OSL signal of the regenerative-dose aliquots, the effect of bleaching duration using sunlight, SOL2 and blue LEDs on De was studied, and it is found that the appropriate method is a short-duration SOL2 (e.g. 5 min) or blue LEDs (e.g. 60 s) bleaching. (2) To select the appropriate test dose, the relationship between the test dose and De was investigated based on three samples having De values of approximately 11, 31 and 137 Gy respectively. It is suggested that the test dose for sensitivity correction may be limited to less than approximately 10–20 Gy. (3) Three commonly used fitting modes for quartz OSL growth curve were compared at three regenerative-dose scales. The results indicate that the mode of two saturating exponential functions plus a constant is appropriate and universal. (4) The comparison of De values derived using OSL approach with those obtained using the recuperated OSL (ReOSL) protocol shows that the reliable De estimation in the fine-grained quartz MAR OSL dating of Chinese loess may be limited to less than approximately 300 Gy. (5) The comparison of growth curves for 18 samples from the Weinan, Xifeng and Jingyuan sites shows that it is feasible to construct a standardized growth curve (SGC) for fine-grained quartz OSL signal in the Chinese Loess Plateau (CLP).  相似文献   

2.
Time-resolved OSL (TR-OSL) from natural zircon (ZrSiO4) minerals was investigated using 445 nm blue laser light for stimulation. Analyses of the TR-OSL spectra have showed that the decay is composed of two exponential components with lifetimes varying around ∼17 μs and around ∼110 μs respectively. The behaviour of these signal components, was examined under various sample treatments and experimental conditions. Preheating experiments showed that the OSL signal is stable up to temperatures ∼250 °C then becomes unstable. The dose response of the TR-OSL signal from zircon was determined in the range from 1 Gy to 1 kGy and observed to be increasing linearly. Practically, no effect of radiation dose on the lifetimes of signal components was observed. In addition, the effect of measurement temperature on the TR-OSL decay lifetimes was also investigated. Thermal quenching energies of the “fast” and the “slow” components were found to be very close to each other i.e. 0.18 and 0.24 eV respectively.  相似文献   

3.
Time-Resolved Optically Stimulated Luminescence (TR-OSL) from single crystalline YAlO3:Mn2+ samples was investigated using a green light emitting diode (λ ∼ 525 nm) as stimulation light source. The TR-OSL decay curve of the material can be described with a single exponential decay function with a lifetime about 80 ms that does not depend on irradiation dose in the range from 50 mGy to 1 kGy. This OSL decay is superposed on a photoluminescence signal with a much shorter (3.5 ms) decay lifetime. The Mn2+ photoluminescence decay with a lifetime of 3.5 ms can be easily eliminated by corresponding time resolution using pulsed OSL readout. Dose response and thermal stability of the OSL signal are consistent with the previous thermoluminescent (TL) studies of the material.  相似文献   

4.
Time-Resolved Optically Stimulated Luminescence (TR-OSL) from BeO ceramics was investigated using a blue laser (445 nm) as stimulation light source. It was observed that, at relatively low dose levels (up to ∼25 Gy) the TR-OSL decay curve can be approximated with a single exponential decay function with a lifetime of ∼26 μs at room temperature. Beyond 25 Gy a new decay component with a lifetime of a ∼2 μs was observed in addition to the ∼26 μs component. Thermal stability, radiation dose response, optical bleaching, measurement temperature dependence of the components of the TR-OSL signal were investigated in detail. As result of these studies, a new OSL component which becomes unstable after 150 °C was observed. OSL decay rate of this component was found to be higher than the one which becomes unstable after 300 °C. In order to obtain information about the temperature dependence of the luminescence efficiency, luminescence emission lifetime was determined in the temperature range from 30 to 130 °C with 10 °C steps. Using the temperature dependence of the lifetime, thermal quenching energy was determined to be around 0.56 eV for the 26 μs component. For the ∼2 μs component an enhancement in the component intensity was observed pointing to a thermally assisted process with activation energy of 0.15 eV.  相似文献   

5.
Time Resolved Optically Stimulated Luminescence (TR-OSL) from BeO ceramics was investigated using blue (445 nm) and near-IR light (852 nm) for stimulation. Stimulation spectrum of the TR-OSL signal – as measured in the interval 700 to 420 nm- was observed to increase monotonically with the decreasing stimulation wavelength. In addition to the “fast” and “slow” components observed with blue light stimulation, IR stimulated TR-OSL spectra of irradiated BeO ceramics were observed to have two components with average lifetimes around ∼2.5 μs and ∼17 μs. Emission spectra of the both IR stimulated TR-OSL components were observed to have a broad emission band peaking around 330 nm. Thermal stability of the IR stimulated TR-OSL signal was studied by making preheating experiments in the range from 100 °C to 190 °C. It was observed that the IR stimulated OSL signal is stable up to ∼150 °C and decay afterwards. Radiation dose response of the IR stimulated luminescence signal was obtained in the range from 5 to 500 Gy. Both blue and IR stimulated TR-OSL signals grew up to 100 Gy and exhibited saturation for higher doses. Additionally, measurement temperature dependence of the components was also investigated and for the ∼2 μs component thermal assistance with activation energy around 0.16 eV was observed. It seems that the fast component of the blue stimulated TR-OSL component can be correlated to the ∼2 μs IR stimulated TR-OSL component.  相似文献   

6.
BaSO4:Eu2+ phosphor has been investigated for its photoluminescence (PL), thermoluminescence (TL), TL kinetics, optically stimulated luminescence (OSL) and thermally assisted OSL (TA-OSL) response. PL spectra showed the characteristic emission of Eu2+ ion at 375 nm when excited by 320 nm. The luminescence lifetime has been measured as 40 and 628 μs of fast and slow components respectively. The TL parameters such as trap depth (E), frequency factor (s) and the order of kinetics (b) are determined. The phosphor is found to be 6 and 4 times more sensitive than CaSO4:Dy and α-Al2O3:C, respectively, in TL mode. However, its OSL sensitivity is 75% of α-Al2O3:C. It is found to possess three OSL components having photoionization cross-sections of 1.4 × 10−17, 1.2 × 10−18 and 5.2 × 10−19 cm2 respectively. The temperature dependence of OSL studies showed that integrated TA-OSL signal increases with stimulation temperature between 50 and 250 °C, while between 260 and 450 °C the signal intensity decreases. This behavior is interpreted to arise from competing effects of thermal assistance (activation energy EA = 0.063 ± 0.0012 eV) and depletion of trapped charges. This increase of OSL at elevated temperature can be employed for enhancing the sensitivity of phosphor for radiation dosimetry.  相似文献   

7.
The LM–OSL signal of quartz, while measured at room temperature, is dominated by an intermediate, broad and intense OSL component, so that its contribution and general characteristics are derived very accurately. Through a series of dose–response, bleaching and thermal decay at room temperature experiments, in conjunction with curve fitting studies, a component resolved analysis is carried out studying the correlation between this specific component, termed as LM–OSL component C2 and the 110 °C TL glow peak in quartz. The dose–response of these two luminescence components behaves exactly similar being linear at low doses and saturating at almost 100 Gy. Both signals decay exponentially under illumination, providing identical optical detrapping cross-section values. Residual of both luminescence signals after thermal decay at room temperature follows an exponential law, yielding similar mean half-lives. All previous luminescence features provide strong evidence for the electron trap being the same for both the 110 °C TL trap and the LM–OSL component C2. The results of the present work are very promising and clearly support the possibility of extrapolating the TL pre-dose methodology to the OSL pre-dose effect using only the LM–OSL component C2.  相似文献   

8.
Optically stimulated luminescence (OSL) measurements have been carried out on single crystals of Ag doped Li2B4O7 (LTB:Ag) after exposure to various nuclear radiations. The time integrated OSL intensity is found to be linear in the range from 0.1 Gy to 500 Gy. Fading of the OSL signal was found to be around 36% in 48 h. The presence of 6Li and 10B has been gainfully utilized to measure doses of thermal neutrons. Further, the large difference between the wavelength of the stimulation source (∼460 nm) and emission from the LTB:Ag at 270 nm has enhanced the signal-to-noise ratio in a simple OSL set-up with suitable filters. The high sensitivity of the LTB:Ag to thermal neutrons will be useful in variety of applications including personal dosimetry in mixed-fields and imaging devices for neutron radiography.  相似文献   

9.
The objective of this work is to investigate basic luminescence properties of BeO optically stimulated luminescence (OSL) detectors, including the OSL emission and stimulation spectrum, the lifetime of the luminescence centers contributing to the OSL signal, and the temperature dependence of the luminescence lifetime and of the luminescence efficiency. The OSL stimulation spectrum shows a continuous increase in OSL intensity with decreasing stimulation wavelength. The emission spectrum indicates two OSL emission bands at ~310 nm and ~370 nm, the latter being the dominant OSL emission band. We also observed that the luminescence centers associated with the OSL signal are strongly quenched above room temperature, resulting in a reduction in luminescence lifetime from ~27 μs at room temperature down to ~800 ns at 140 °C. The activation energy for non-radiative decay of the luminescence center was determined to be E = (0.568 ± 0.023) eV. The ~27 μs luminescence lifetime observed for BeO indicate that POSL technique may be used to improve the signal-to-noise ratio using stimulation pulses of the order of microseconds. The information obtained in this study may help further optimize the BeO dosimetry systems and provide guidance on the timing parameters to be used for POSL measurements of this material.  相似文献   

10.
The purpose of this study is to investigate the potential use of a beryllium oxide (BeO) ceramic as a radioluminescence (RL) and optically stimulated luminescence (OSL) probe material for fibre-coupled luminescence dosimetry. A portable dosimetry system, named RL/OSL BeO FOD was developed, consisting of a 1 mm diameter, 1 mm long BeO ceramic cylinder coupled to a silica/silica optical fibre. The reader measures the RL signal and also uses a 450 nm laser diode to stimulate the BeO ceramic. A second background optical fibre is used to remove the stem effect. The RL/OSL BeO FOD was characterised in a solid water phantom, using a 6 MV x-ray beam. The RL was found to be reproducible and have a linear response to doses ranging from 30 cGy–15 Gy and dose rates from 100 cGy/min – 600 cGy/min. The OSL response was linear to doses of 10 Gy, becoming supralinear at higher doses. Measured percentage depth curves using the RL/OSL BeO FOD agreed with those measured using an IC15 ion chamber to within 5%, beyond the build up region. It was also found that the RL from BeO ceramic is unaffected by the delivered dose to the probe and hence, it remains constant for a given dose-rate. The insensitivity of the RL to accumulated dose makes BeO ceramic potentially capable of accurate dose-rate measurements without any corrections for the accumulated dose. This study demonstrates the feasibility of BeO ceramic as a versatile fibre-coupled luminescence dosimeter probe.  相似文献   

11.
Natural fluorite (CaF2), a dosimetric material of large usage, presents Thermoluminescence (TL) and Optically Stimulated Luminescence (OSL). This study examined the behavior of TL and OSL (stimulated with Blue LEDs) signals from the Brazilian natural fluorite pellets with NaCl as binding agent, as well as their correlations, in order to study and optimize the dosimetric process with this material. A series of experiments were conducted, basically with thermal treatments before OSL acquisition, and optical bleaching before TL readout. The role of NaCl in the TL and OSL emission was investigated. It was observed that natural CaF2 TL signal is still ample to be used in dosimetric applications, as dose re-assessment in personal dosimetry after an OSL measurement. Also it was verified that the fluorite OSL signal is extinguished by a 350 °C heating and that NaCl has no contribution to the stable part of the OSL signal.  相似文献   

12.
The pre-dosed thermoluminescence (TL) emission of quartz has been found to be useful in retrospective dosimetry and archaeometry. Though the pre-dosed optically stimulated luminescence (OSL) and TL emissions have been reported to be similar, the former has been found to be un-reliable for the equivalent dose estimation. As this measurement protocol involves thermal heating at around 400 °C, the work reported in this paper investigated the influence of this heating on the OSL using fired specimens from various regions. The results suggested that the discrepancy in the behaviour of two emissions is caused by the presence of the thermally transferred optically stimulated luminescence (TT-OSL) induced by thermal-activation involved in the pre-dose treatment. This transferred signal was observed to be very significant in the case of samples containing a prominent higher-temperature TL peak at ∼375 °C. The characterization of this signal based on (i) the nature of the glow curves, (ii) thermal-annealing of the OSL trap, (iii) observation of the TT-OSL, (iv) bleaching of the source trap and (v) the correlation between TL and OSL seems to suggest that the trap corresponding to this TL peak is the source trap in the TT-OSL emission mechanism.  相似文献   

13.
Recently, a new optical phenomenon was observed in sodium chloride (NaCl). Performing series of optically stimulated luminescence (OSL) readouts it was found that subsequent OSL decay, after some delay, starts from significantly higher intensity level than the final intensity of the previous readout. This unusual behavior was called the ‘regeneration effect’ (Biernacka and Mandowski, 2013). Regeneration occurs in spite of the significant fading of OSL – well known in this material. Nevertheless, these two contradictory processes take place in two different time scales. Previously, it was proved also, that the regeneration phenomenon cannot be explained on the basis of the classical simple trap model (STM). This paper analyses optimal measurement conditions leading to the highest regeneration effect. It was found that the increase of OSL intensity could be as high as 190%. A simple phenomenological model explaining the mechanism of regeneration is proposed. The model involves simultaneous localized and delocalized (i.e. band-like) transitions. Characteristic lifetimes of regeneration and fading processes are of the order of 560 s and 22000 s, respectively.  相似文献   

14.
In this work, the response of the natural material Opal was studied in relation to its thermoluminescence (TL) and optically stimulated luminescence (OSL), after exposure to the gamma radiation of a 60Co source. The structure of the powdered Opal was verified using the X-ray diffraction, scanning electronic microscopy and energy-dispersive X-ray spectroscopy techniques. The material, in its stone form, was turned into powder and mixed to Teflon (also in powder) in three different concentrations, and then pellets were manufactured. The aim of this work was to evaluate the response of these pellets in high-doses of gamma radiation beams, and to observe their possible application as dosimeters, using the TL and OSL techniques. The dosimetric properties of the samples were analyzed by means of different tests, as: TL emission curves and OSL signal decay curves, reproducibility of TL and OSL response, minimum detectable dose, TL and OSL dose–response curves (5 Gy–10 kGy), and fading. The results obtained in this work, for the TL and OSL phenomena, demonstrated that the pellets of Opal + Teflon present an adequate performance e possibility of use as dosimeters in beams of high-dose gamma radiation.  相似文献   

15.
Previous SAR-OSL dating studies using quartz extracted from Romanian and Serbian loess samples report SAR-OSL dose–response curves on fine grained (4–11 μm) quartz that grow to much higher doses compared to those of coarse-grained (63–90, 90–125, 125–180 μm) quartz. Furthermore, quartz SAR-OSL laboratory dose response curves do not reflect the growth of the OSL signal in nature. A main difference in coarse- and fine-grained quartz dating lies in the alpha irradiation history, but the effect of mixed alpha-beta fields has so far received little attention. In the present study we investigate whether the alpha dose experienced by fine grains over geological cycles of irradiation and bleaching may have an effect on the saturation characteristics of the laboratory dose response. By applying time resolved optically stimulated luminescence we confirm that the OSL signals induced in quartz by alpha and beta radiation follow the same recombination path. We also show that a mixed alpha-beta dose response reproduces the beta dose response only up to about 800 Gy. Assuming an a-value of 0.04 we have shown that laboratory alpha and beta dose response curves overlap up to effective alpha doses of ∼50 Gy. Based on these results, we conclude that exposure of fine grains to alpha radiation during burial and transport cycles prior to deposition, as well exposure to the mixed radiation field experienced during burial are not responsible for the age discrepancies previously reported on fine and coarse grained quartz extracted from Romanian and Serbian loess.  相似文献   

16.
Optically stimulated luminescence (OSL) of pure analytical sodium chloride (NaCl) was studied. Performing series of CW-OSL (continuous wave OSL) readouts it was found that subsequent CW-OSL decay, after some delay, starts from significantly higher intensity level than the final intensity of the previous readout. To study this ‘regeneration effect’ a new type of measurements was implemented – the variable delay OSL (VD-OSL) method. The idea of VD-OSL is explained – it allows to study OSL kinetics at very long time scale. VD-OSL data confirm coexistence of two effects in NaCl – regeneration and fading of the OSL signal. After partial CW-OSL readout, regeneration predominates in the short time scale of the order of 103 s. Then, fading becomes dominant. The same measurements were applied to commonly used Al2O3:C material as well. Nevertheless, the results do not show such behavior at the studied time scale. Theoretical arguments are presented that the regeneration mechanism cannot be explained on the basis of the simple trap model.  相似文献   

17.
《Radiation measurements》2009,44(4):329-337
The thermal bleaching of the optically stimulated luminescence (OSL) has been investigated by computer simulations for a model including three traps and two luminescence centres. The deepest trap is active only during the OSL process. Two other traps are active only during the thermal bleaching. The thermal bleaching effects on the OSL intensity as well as on the OSL curve shape are presented for the wide range of trap and luminescence centre parameters and for the different settings of optical detection window. The conventional OSL curve analysis consisting in decomposition of the OSL curve into first order components is applied to the simulation results and the optical cross section spectra obtained as a result of this analysis are compared with the model assumptions. The simulations show that OSL signal can decrease to undetectable level even when the traps related to this signal are not emptied during thermal bleaching. The residual level of the OSL signal after bleaching process, however, depends strongly on centre parameters and concentrations. The modifications of optical detection spectral window lead to significant changes of bleaching effects. The thermal bleaching influences also the optical cross section spectra obtained as a result of the OSL curve decomposition.  相似文献   

18.
Optically Stimulated Luminescence (OSL) signals of BeO ceramics were investigated using continuous wave (CW) OSL and Linearly Modulated (LM) OSL. It was found that both curves can be approximated using a linear combination of two first-order components. Experiments on the measurement temperature dependence have shown that these two components have nearly the same thermal quenching energies around 0.57 eV. Dependences of the OSL signal on preheat temperature and radiation dose were also examined. Thermal annealing experiments have shown that OSL signals originate from traps which are unstable near 340 °C, thus proving the suitability of the signals for dosimetric purposes. Dose response was found to be linear and a minimum detectable dose of ~10 μGy was found.  相似文献   

19.
A portable and robust instrument has been developed for the routine assessment of patient exposure to ionizing radiation during radiotherapy treatments. The design principles of hardware and software are described, along with preliminary measurements that illustrate the operation of the system and its capabilities. In this study the authors used radioluminescence (RL) and Optically Stimulated Luminescence (OSL) from Al2O3:C detectors coupled to a PMMA optical fibre to acquire dose in medical dosimetry. The RL/OSL prototype can provide two independent dose estimates from the same in vivo treatment: one integrated dose estimate (OSL) and one real-time dose estimate (RL), which can be compared to one another. The authors first characterized the dose–response to a calibration source (137Cs), analysing the OSL and the RL signal to doses from 0.5 to 3 Gy. Later the percentage dose depth from RL is presented for two gamma (6 and 15 MV) and two electron (6 and 12 MeV) medical beams.  相似文献   

20.
Optically stimulated luminescence (OSL) of pure analytical potassium chloride (KCl) prepared in two different forms (crystals and pellets) was studied. The occurrence of regeneration effect (self-renewal of the OSL signal) in the material was examined. The experiments using the variable delay OSL (VD-OSL) method were carried out. Performed measurements allowed to determine time scale of the phenomenon, as well as quantitative changes of regeneration depending on thermal treatment before and after irradiation. Significant increase of the OSL regeneration was noticeable for pellets after the application of the annealing before irradiation, while for crystals a substantial decrease of regeneration was observed. Preheating applied after irradiation caused that self-renewal of OSL signal was drastically reduced or completely suppressed depending on the form of KCl samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号