首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The palladium-catalyzed sequential one-pot N-arylation-carbo-amination-C-arylation of O-homoallylhydroxylamines with two different aryl bromides provides rapid entry to differentially arylated N-aryl-3-arylmethylisoxazolidines in good yields with excellent diastereoselectivity. The obtained isoxazolidines can be reductively cleaved to cis-N-aryl-beta-amino alcohols in short times and in high yields at room temperature.  相似文献   

2.
Yang C  Lee HM  Nolan SP 《Organic letters》2001,3(10):1511-1514
[reaction: see text] A new phosphine-imidazolium salt, L.HBr (1, L = (1-ethylenediphenylphosphino-3-(mesityl))imidazol-2-ylidene), has been prepared. A combination of 0.5 mol % of Pd(dba)(2) and 0.5 mol % of L.HBr in the presence of 2 equiv of Cs(2)CO(3) as base has proven to be highly efficient in the Heck coupling reactions of aryl bromides (from electron-deficient to electron-rich aryl bromides) with n-butyl acrylate.  相似文献   

3.
Two procedures for the alpha-arylation of carbonyl compounds under conditions that are more neutral than those of reactions of aryl halides with alkali metal enolates are reported. The first procedure rests upon the development of catalysts bearing the hindered pentaphenylferrocenyl di-tert-butylphosphine (Q-phos) and the highly reactive dimeric Pd(I) complex {P(t-Bu)3]PdBr}2. By this procedure, zinc enolates prepared from alpha-bromo esters and amides react with aryl halides to form alpha-aryl esters and amides in high yields under mild conditions with 1-2 mol % catalyst and with remarkable functional group tolerance. By the second procedure, silyl ketene and silyl ketimine acetals react with aryl bromides in the presence of substoichiometric zinc fluoride, 1 mol % Pd(dba)2, and 2 mol % P(t-Bu)3 in DMF solvent at 80 degrees C. Reactions of zinc tert-butyl acetate and propionate enolates and trimethylsilyl ketene acetals of tert-butyl propionate and methyl isobutyrate with aryl bromides bearing electron-donating and potentially reactive, base-sensitive electron-withdrawing groups and with pyridyl bromides are reported. In addition, the diastereoselective coupling of phenyl bromide with an imide enolate bearing the Evans auxiliary is reported, and this study shows that racemization of base-sensitive stereocenters does not occur during the coupling process under these more neutral conditions.  相似文献   

4.
An improved method for the reductive coupling of aryl and vinyl bromides with alkyl halides that gave high yields for a variety of substrates at room temperature with a low (2.5 to 0.5 mol %) catalyst loading is presented. Under the optimized conditions, difficult substrates, such as unhindered alkenyl bromides, can be coupled to give the desired olefins with minimal diene formation and good stereoretention. These improved conditions also worked well for aryl bromides. For example, a gram‐scale reaction was demonstrated with 0.5 mol % catalyst loading, whereas reactions at 10 mol % catalyst loading completed in as little as 20 minutes. Finally, a low‐cost single‐component pre‐catalyst, (bpy)NiI2 (bpy=2,2′‐bipyridine) that is both air‐ and moisture‐stable over a period of months was introduced.  相似文献   

5.
Two simple and inexpensive systems for copper-catalyzed N-arylations of sulfoximines with aryl bromides and aryl iodides have been developed. Using 10 mol % of a copper(I) salt in combination with 20 mol % of a 1,2-diamine and Cs2CO3 provides N-arylated sulfoximines in high yields. Various functional groups and heteroatoms are tolerated. The method is complementary to the known protocols for N-arylations of sulfoximines, which require stoichiometric quantities of copper salts or cost-intensive palladium/BINAP catalysts.  相似文献   

6.
A highly efficient cross-coupling of diarylborinic acids and anhydrides with aryl chlorides and bromides has been effected by using a palladium catalyst system co-supported by a strong σ-donor N-heterocyclic carbene (NHC), N,N'-bis(2,6-diisopropylphenyl) imidazol-2-ylidene, and a strong π-acceptor phosphite, triphenylphosphite, in tert-BuOH in the present of K(3)PO(4)·3H(2)O. Unsymmetrical biaryls with a variety of functional groups could be obtained in good to excellent yields using as low as 0.01, 0.2-0.5, and 1 mol % palladium loadings for aryl bromides and activated and deactivated aryl chlorides, respectively, under mild conditions. A ligand synergy between the σ-donor NHC and the π-acceptor phosphite in the Pd/NHC/P(OPh)(3) catalytic system has been proposed to be responsible for the high efficacy to arylchlorides in the cross-coupling. A scalable and economical process has therefore been developed for synthesis of Sartan biphenyl from the Pd/NHC/P(OPh)(3) catalyzed cross-coupling of di(4-methylphenyl)borinic acid with 2-chlorobenzonitrile.  相似文献   

7.
The synthesis of a variety of alkylidene benzoxacycles via a domino palladium-catalyzed ortho-alkylation/intramolecular Heck reaction is described. Under the optimized conditions [Pd(OAc)2 (10 mol %), P(2-Furyl)3 (20 mol %), norbornene (4 equiv), Cs2CO3 (2 equiv), CH3CN, 80 degrees C], aryl iodides with oxygen-tethered Heck acceptors are coupled with alkyl bromides (5 equiv) to generate a variety of six- and seven-membered-ring benzoxacyclic products.  相似文献   

8.
Kao HL  Lee CF 《Organic letters》2011,13(19):5204-5207
The synthesis of vinyl sulfides through the coupling reaction of thiols with vinyl iodides, bromides, and chlorides is described. The thiols can couple with aryl iodides in the presence of only 0.5 mol % Cu(2)O without the need for an ancillary ligand. In the presence of 5 mol % of Cu(2)O and 10 mol % 1,10-phenanthroline as the ligand, the more challenging alkyl vinyl bromides can also be coupled with thiols, giving the vinyl sulfides in good to excellent yields.  相似文献   

9.
Aroyl imides were prepared by a palladium-catalyzed aminocarbonylation reaction of aryl bromides with carbon monoxide and primary amides in good yields (58-72%). The reactions were carried out under mild conditions (5 bar, 120 degrees C) using 1 mol % of a palladium phosphine complex. Several aryl bromides were reacted with formamide, acetamide, benzamide, and benzenesulfonamide, respectively. For activated aryl bromides, a phosphine-to-palladium ratio of 2:1 was sufficient, but less reactive aryl bromides required a ligand-to-palladium ratio of 6:1 in order to stabilize the catalyst and achieve full conversion. The imides were very sensitive to aqueous basic conditions and were easily converted to aroyl amides or benzoic acids.  相似文献   

10.
[reaction: see text] Palladium(0)-catalyzed cross-coupling reactions between tris(dihydropyranyl)indium 1 and aryl halides 2 have been investigated. Aryl iodides and electron-deficient aryl bromides couple efficiently with the in situ-generated indium reagents in the presence of 1-5 mol % Cl(2)Pd(PPh(3))(2) to produce substituted dihydropyrans 3 with minimal (<10%) dimer (4) formation. Organoindium reagents derived from D-glucal also undergo cross couplings with aryl iodides to produce C-aryl glycals.  相似文献   

11.
The scope of the palladium-catalyzed silylation of aryl halides with triethoxysilane has been expanded to include aryl bromides. A more general Pd(0) catalyst/ligand system has been developed that activates bromides and iodides: palladium(0) dibenzylideneacetone (Pd(dba)(2)) is activated with 2-(di-tert-butylphosphino)biphenyl (Buchwald's ligand) (1:2 mol ratio of Pd/phosphine). Electron-rich para- and meta-substituted aryl halides (including unprotected aniline and phenol derivatives) undergo silylation to form the corresponding aryltriethoxysilane in fair to excellent yield; however, ortho-substituted aryl halides failed to be silylated.  相似文献   

12.
[reaction: see text] Ligand-free Pd(OAc)(2) can be used as a catalyst in the Heck reaction of aryl bromides as long as the amount of catalyst is kept between 0.01 and 0.1 mol %. At higher concentrations palladium black forms and the reaction stops. The actual catalyst is monomeric. Palladacycles merely serve as a source of ligand-free palladium in Heck reactions of aryl bromides.  相似文献   

13.
The Sonogashira coupling of various aryl bromides and iodides with different acetylenes was studied under biphasic conditions with soluble, polymer-modified catalysts to allow the efficient recycling of the homogeneous catalyst. For this purpose, several sterically demanding and electron-rich phosphines of the type R(P)PR(2) were synthesised. They are covalently linked to a monomethyl polyethylene glycol ether with a mass of 2000 Dalton (R(P)=MeOPEG(2000)) R(P)PR(2): -PR(2)= -CH(2)C(6)H(4)CH(2)P(1-Ad)(2), -C(6)H(4)-P(1-Ad)(2), -C(6)H(4)-PPh(2). To couple aryl iodides and acetylenes, the catalyst [(MeCN)(2)PdCl(2)]/2 R(P)-C(6)H(4)-PPh(2) was used in CH(3)CN/Et(3)N/n-heptane (5/2/5). The combined yields of coupling product over five reaction cycles are between 80-95 percent. There is no apparent leaching of the catalyst into n-heptane, as evidenced by (1)H NMR spectroscopy. The new catalyst [(MeCN)(2)PdCl(2)]/2 (1-Ad)(2)PBn can be used for room-temperature coupling of various aryl bromides and acetylenes in THF with HNiPr(2) as a base. A closely related catalyst Na(2)[PdCl(4)]/2 R(P)-CH(2)C(6)H(4)CH(2)P(1-Ad)(2) linked to the polymer was used to couple aryl bromides and acetylenes in DMSO or DMSO/n-heptane at 60 degrees C with 0.5 mol percent Na(2)[PdCl(4)], 1 mol percent R(P)PR(2) and 0.33 mol percent CuI. The combined yield of coupling products over five cycles is always greater than 90 percent, except for sterically hindered aryl bromides. The determination of the turnover frequency (TOF) of the catalyst indicates only a small decrease in activity over five cycles. Leaching of the catalyst into the product containing n-heptane solution could not be detected by means of (1)H NMR and TXRF; this is indicative of >99.995 percent catalyst retention in the DMSO solvent.  相似文献   

14.
Arene and phenylmethanesulfonyl chlorides can be cross-coupled with aryl, heteroaryl, and alkenylstannanes with desulfitation in the presence of 10 mol % CuBr.Me2S, 1.5 mol % Pd2dba3, and 5 mol % tri-2-furylphosphine in tetrahydrofuran or toluene under reflux. This extension of the Stille cross-coupling reaction realizes a new and economical method for the generation of C-C bonds. The palladium-catalyzed carbonylative Stille cross-coupling reactions of arenesulfonyl chlorides and organostannanes in the presence of CO (60 bar) at 110 degrees C in toluene generate the corresponding ketones. Arenesulfonyl chlorides are more reactive than aryl chlorides and aryl bromides in their Stille cross-coupling with organostannanes but less reactive than aryl iodides. The new methods disclosed for the generation of C-C bonds open new possibilities for medicinal chemistry and material sciences.  相似文献   

15.
Ligand-free Pd(OAc)(2) was found to catalyze very efficiently the direct arylation of imidazo[1,2-a]pyridines at C3 under very low catalyst concentration. The reaction can be performed employing as little as 0.1-0.01 mol % catalyst with electron-deficient and some electron-excessive aryl bromides.  相似文献   

16.
An efficient palladium-catalyzed copper- and amine-free Sonogashira coupling reaction of aryl bromides and chlorides was studied using a sterically hindered monooxychlorophosphine as new ligand.The use of 2 mol%Pd(OAc)2 in the presence of K2CO3 allows the coupling reaction to proceed at mild condition with good to excellent yields.  相似文献   

17.
A scaleable synthesis of 2-bromo-3-fluorobenzonitrile via the NaOMe-catalyzed bromodeboronation of 2-cyano-6-fluorophenylboronic acid was developed. The generality of this transformation was demonstrated through the halodeboronation of a series of aryl boronic acids. Both aryl bromides and aryl chlorides were formed in good to excellent yields when the corresponding aryl boronic acid was treated with 1,3-dihalo-5,5-dimethylhydantoin and 5 mol % NaOMe.  相似文献   

18.
A general and efficient copper catalyst for the amidation of aryl halides   总被引:1,自引:0,他引:1  
An experimentally simple and inexpensive catalyst system was developed for the amidation of aryl halides by using 0.2-10 mol % of CuI, 5-20 mol % of a 1,2-diamine ligand, and K(3)PO(4), K(2)CO(3), or Cs(2)CO(3) as base. Catalyst systems based on N,N'-dimethylethylenediamine or trans-N,N'-dimethyl-1,2-cyclohexanediamine were found to be the most active even though several other 1,2-diamine ligands could be used in the easiest cases. Aryl iodides, bromides, and in some cases even aryl chlorides can be efficiently amidated. A variety of functional groups are tolerated in the reaction, including many that are not compatible with Pd-catalyzed amidation or amination methodology.  相似文献   

19.
Primary aromatic amides were prepared by a palladium-catalyzed aminocarbonylation reaction of aryl halides in high yields (70-90%) using formamide as the amine source. The reactions require a palladium catalyst in combination with a nucleophilic Lewis base such as imidazole or 4-(dimethylamino)pyridine (DMAP). Aryl, heteroaryl, and vinyl bromides and chlorides were converted to the primary amides under mild conditions (5 bar, 120 degrees C) using 1 mol % of a palladium-phosphine complex. Best results were obtained in dioxane using triphenylphosphine as the ligand and DMAP as the base. For activated aryl bromides, a phosphine-to-palladium ratio of 2:1 was sufficient, but less reactive aryl bromides or aryl chlorides required ligand-to-palladium ratios up to 8:1 in order to stabilize the catalyst and achieve full conversion. The influence of catalyst, base, solvent, pressure, and temperature was studied in detail. The mechanism of the reaction could be clarified by isolating and identifying the reaction intermediates. In addition, methylamides and dimethylamides were prepared by the same method using N-methylformamide and N,N-dimethylformamide as the amine source.  相似文献   

20.
An efficient method for palladium-catalyzed homocoupling reaction of terminal alkynes in the synthesis of symmetric diynes is presented. The results showed that both Pd(OAc)(2) and CuI played crucial roles in the reaction. In the presence of 2 mol % Pd(OAc)(2), 2 mol % CuI, 3 equiv of Dabco, and air, homocoupling of various terminal alkynes afforded the corresponding symmetrical diynes in moderate to excellent yields, whereas low yields were obtained without either Pd(OAc)(2) or CuI. Moreover, high TONs (turnover numbers; up to 940 000 for the reaction of phenylacetylene) for the homocoupling reaction were observed. Under similar reaction conditions, cross-coupling of 1-iodo-4-nitrobenzene with phenylacetylene was also carried out smoothly in quantitative yield. However, the presence of CuI disfavored the palladium-catalyzed Sonogashira cross-coupling reactions of the less active aryl iodides and bromides. In the presence of 0.01-2 mol % Pd(OAc)(2), a number of aryl iodides and bromides were coupled with terminal alkynes in good to excellent yields. It is noteworthy that this protocol employs mild, efficient, aerobic, copper-free, and ligand-free conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号