首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
An experimental investigation of a shock-induced interfacial instability (Richtmyer-Meshkov instability) is undertaken in an effort to study temporal evolution of interfacial perturbations in the late stages of development. The experiments are performed in a vertical shock tube with a square cross-section. A membraneless interface is prepared by retracting a sinusoidally shaped metal plate initially separating carbon dioxide from air, with both gases initially at atmospheric pressure. With carbon dioxide above the plate, the Rayleigh-Taylor instability commences as the plate is retracted and the amplitude of the initial sinusoidal perturbation imposed on the interface begins to grow. The interface is accelerated by a strong shock wave (M = 3.08) while its shape is still sinusoidal and before the Kelvin-Helmholtz instability distorts it into the well known mushroom-like structures; its initial amplitude to wavelength ratio is large enough that the interface evolution enters its nonlinear stage very shortly after shock acceleration. The pre-shock evolution of the interface due to the Rayleigh-Taylor instability and the post-shock evolution of the interface due to the Richtmyer-Meshkov instability are visualized using planar Mie scattering. The pre-shock evolution of the interface is carried out in an independent set of experiments. The initial conditions for the Richtmyer-Meshkov experiment are determined from the pre-shock Rayleigh-Taylor growth. One image of the post-shock interface is obtained per experiment and image sequences, showing the post-shock evolution of the interface, are constructed from several experiments. The growth rate of the perturbation amplitude is measured and compared with two recent analytical models of the Richtmyer-Meshkov instability.PACS: 52.35.Py, 52.35.Tc  相似文献   

2.
利用高速纹影测试实验研究低马赫数入射激波绕圆柱体后冲击N2/SF6平面界面,以及来自固壁的反射激波再冲击过程的(Richmyer-Meshkov,R-M)不稳定性特征.与平面激波作用不同的是,绕射后的激波会在界面处生成局部扰动.实验结果显示,入射激波作用下界面宽度增长缓慢,而反射激波再冲击后,局部扰动会产生大的“尖钉”和“气泡”结构;以及反射激波与边界层相互作用产生壁面涡,它们会加剧湍流混合区的增长;实验中反射激波过后混合区增长率不十分依赖于波前状态,增长规律同Mikaelian模型较吻合;来自尾部固壁的反射稀疏波会再次加剧湍流混合区的增长.  相似文献   

3.
汪洋  董刚 《力学学报》2020,52(6):1655-1665
预混火焰界面的RM (Richtmyer-Meshkov)不稳定导致的界面混合区增长过程在自然界和工程实践中十分常见,但化学反应对其增长的影响机理仍不明确,反应性界面混合区增长速率的预测也未见报道, 因此,开展RM不稳定过程中火焰界面演化和混合区预测的研究十分必要.本文采用带单步化学反应的Navier-Stokes方程和高精度数值格式,研究了正弦形预混火焰界面在平面入射激波及其反射激波作用下的RM不稳定过程.结果表明, 在入射激波作用后的阶段,除RM不稳定本身导致的界面演化为"钉-帽"和"泡"形结构外,化学反应一方面以预混火焰传播的方式促进了界面中"泡"结构的增长,另一方面通过与涡结构的复杂相互作用促进了"钉-帽"结构的增长.化学反应活性越强, 火焰界面的"泡" 结构和"钉-帽"结构的增长越快.在第一次反射激波作用后的阶段,化学反应以相同的火焰传播方式对"泡"和"钉-帽"结构产生影响, 两者效应相抵,因而导致反射激波作用后的阶段中界面混合区增长不受化学反应活性的影响.根据以上分析,分别针对入射激波和第一次反射激波作用后的火焰界面混合区增长速率提出了相应的预测模型,为探索反应性RM不稳定过程的理论预测方法提供了有益参考.   相似文献   

4.
预混火焰界面的RM (Richtmyer-Meshkov)不稳定导致的界面混合区增长过程在自然界和工程实践中十分常见,但化学反应对其增长的影响机理仍不明确,反应性界面混合区增长速率的预测也未见报道, 因此,开展RM不稳定过程中火焰界面演化和混合区预测的研究十分必要.本文采用带单步化学反应的Navier-Stokes方程和高精度数值格式,研究了正弦形预混火焰界面在平面入射激波及其反射激波作用下的RM不稳定过程.结果表明, 在入射激波作用后的阶段,除RM不稳定本身导致的界面演化为"钉-帽"和"泡"形结构外,化学反应一方面以预混火焰传播的方式促进了界面中"泡"结构的增长,另一方面通过与涡结构的复杂相互作用促进了"钉-帽"结构的增长.化学反应活性越强, 火焰界面的"泡" 结构和"钉-帽"结构的增长越快.在第一次反射激波作用后的阶段,化学反应以相同的火焰传播方式对"泡"和"钉-帽"结构产生影响, 两者效应相抵,因而导致反射激波作用后的阶段中界面混合区增长不受化学反应活性的影响.根据以上分析,分别针对入射激波和第一次反射激波作用后的火焰界面混合区增长速率提出了相应的预测模型,为探索反应性RM不稳定过程的理论预测方法提供了有益参考.  相似文献   

5.
利用激波管装置及马赫数为1.27的弱入射激波实验研究了SF6非均匀流场的R-M不稳定性。Air/SF6初始正弦界面由厚度为0.5μm的薄膜相隔得到,由阴影方法记录界面演化过程。实验结果表明:由于不稳定性,重流体(SF6)向轻流体(Air)演化成"尖钉"结构,而轻流体演化为"气泡"结构;由于界面切向速度差的Kelvin-Helmholtz不稳定性,"尖钉"头部翻转成蘑菇头形状;由于流场密度分布不均,低密度区流场扰动增长较快,扰动振幅发展的实验结果与PPM数值计算的结果较吻合。  相似文献   

6.
陈霄  董刚  蒋华  吴锦涛 《爆炸与冲击》2017,37(2):229-236
激波诱导火焰失稳是实际中常见的现象,为深入研究火焰失稳特性,采用三维单步化学反应的Navier-Stokes方程和9阶weighted essentially non-oscillatory (WENO)的高精度格式,对不同马赫数的入射激波及其反射激波多次诱导正弦型预混火焰界面失稳的现象进行了三维数值模拟,并对计算结果的可靠性进行了验证。研究结果显示,在激波的多次作用下,火焰界面的演变过程主要受Richtmyer-Meshkov (RM)不稳定特性和化学反应特性的双重影响,且随着入射激波强度的增强,上述2种特性均得到进一步强化。为构造体现反应性RM不稳定特性的参数,根据火焰界面混合区平均涡量和化学反应速率,提出了表征界面受不稳定性和化学反应影响的量纲一参数。通过分析发现,在同一入射激波强度下,该参数的对数形式随入射激波和反射激波的多次作用呈基本相同的线性增长趋势;对不同马赫数的入射激波,该参数对数形式的线性增长率也基本一致。这样的变化表明该量纲一参数能够反映反应性RM不稳定过程中火焰界面发展的内在规律。  相似文献   

7.
基于Navier-Stokes方程组,采用可压缩多介质黏性流动和湍流大涡模拟程序MVFT (multi-viscousflow and turbulence),模拟了均匀流场与初始密度呈现高斯函数分布的非均匀流场中马赫数为1.25的非平面激波加载初始扰动air/SF6界面的Richtmyer-Meshkov (RM)不稳定性现象。数值模拟结果表明,初始流场非均匀性将会影响非平面激波诱导的RM不稳定性演化过程。反射激波加载前,非平面激波导致的界面扰动振幅随着流场非均匀性增强而增大;反射激波加载后,非均匀流场与均匀流场条件下的界面扰动振幅差异有所减小。进一步,定量分析流场中环量分布及脉动速度统计量揭示了前述规律的原因。此外,还与平面激波诱导的RM不稳定性进行了简单对比,发现由于非平面激波波阵面区域的涡量与激波冲击界面时产生的涡量的共同作用,使得非平面激波与平面激波诱导的界面失稳过程存在差异。  相似文献   

8.
B.P. Howell  G.J. Ball 《Shock Waves》2000,10(4):253-264
Mesh-induced errors at material interfaces are identified as a source of unphysical behaviour in Lagrangian numerical simulations of Richtmyer-Meshkov instability. The mesh geometry introduces interface perturbations with wavelengths of the same order as the mesh resolution. When a shock propagates through the interface, these perturbations can grow, severely contaminating the predicted interface development. Here an algorithm is presented which damps small-scale interface perturbations. A body force is applied at the interface which depends upon the disturbance amplitude and growth rate, and which resembles surface tension. Using this technique, qualitative improvements are obtained in Free-Lagrange simulations of single-mode Richtmyer-Meshkov instability. Growth rate behaviour and the evolution of the instability are seen to agree well with previously published results. Received 9 March 2000 / Accepted 30 May 2000  相似文献   

9.
The problem of interaction of a weak shock wave with a periodically disturbed phase interface between compressible fluids is solved in the linear approximation. A criterion of the Richtmyer-Meshkov instability is derived.  相似文献   

10.
蒋华  董刚  陈霄 《力学学报》2014,46(4):544-552
采用Navier-Stokes 方程对入射激波及其反射激波连续诱导小振幅扰动界面的Richtmyer-Meshkov 不稳定性增长过程进行了二维数值模拟,分析了单模和随机多模两种不同初始形态的界面上钉结构和泡结构在反射激波作用前后的发展特性. 研究结果发现:单模扰动的初始界面形态对反射激波前、后界面的扰动增长都有影响,反射激波前的界面形态信息可以通过钉和泡结构之间的反转传递到反射激波过后. 扰动界面上钉结构的发展速度控制了界面混合区总体的发展速度,反射激波前界面上发展成具有完整冠部形态的钉,在反射激波后会反转成复杂的泡结构,此泡结构对反射激波后钉的发展不利. 随机多模界面显示了与单模界面类似的发展规律,但随机多模界面上的复杂泡结构分布的不对称性使得其对钉结构增长的拖曳效应相对要弱,这导致了相似扰动波长下多模随机界面的扰动发展相对单模界面扰动发展要快.   相似文献   

11.
利用CE/SE(conservation element and solution element )格式研究了柱面会聚波在气体中传播时间断面的不稳定问题和波阵面的演变问题,并利用level set函数追踪了驱动气体与低压气体间断面的发展过程。得到了间断面的Rayleigh-Taylor(R-T)和Richtmyer-Meshkov(R-M)不稳定性发展成典型的尖钉和气泡结构的图像,初始正弦扰动下的会聚波产生尖角和尖瓣结构。结果表明,CE/SE格式在涉及会聚波的数值计算中是可行的。  相似文献   

12.
采用Navier-Stokes 方程对入射激波及其反射激波连续诱导小振幅扰动界面的Richtmyer-Meshkov 不稳定性增长过程进行了二维数值模拟,分析了单模和随机多模两种不同初始形态的界面上钉结构和泡结构在反射激波作用前后的发展特性. 研究结果发现:单模扰动的初始界面形态对反射激波前、后界面的扰动增长都有影响,反射激波前的界面形态信息可以通过钉和泡结构之间的反转传递到反射激波过后. 扰动界面上钉结构的发展速度控制了界面混合区总体的发展速度,反射激波前界面上发展成具有完整冠部形态的钉,在反射激波后会反转成复杂的泡结构,此泡结构对反射激波后钉的发展不利. 随机多模界面显示了与单模界面类似的发展规律,但随机多模界面上的复杂泡结构分布的不对称性使得其对钉结构增长的拖曳效应相对要弱,这导致了相似扰动波长下多模随机界面的扰动发展相对单模界面扰动发展要快.  相似文献   

13.
界面不稳定性, 特别是Richtmyer–Meshkov (RM) 不稳定性, 是流体
力学中一项重要的研究内容, 无论在学术研究领域还是工程应用领域都有着
重要的研究价值和应用背景. RM 不稳定性问题自提出以来, 得到了学术界
广泛的关注, 其研究无论是在实验方法、数值模拟还是在理论分析方面都取
得了很大的进展. 在激波管中开展激波与界面相互作用的实验研究, 即研究
界面初始扰动在激波诱导下的演化规律, 是目前研究RM 不稳定性的重要手
段. RM 不稳定性实验研究包括3 个部分, 分别是激波的产生、界面的形成
以及流场的观测. 综述了RM 不稳定性的实验研究进展, 并针对目前研究的
局限性提出了RM 不稳定性今后实验研究的重点和方向: 汇聚激波作用下界
面不稳定性的发展规律; 激波冲击下多种形状及大振幅界面的演化机理; 三
维界面的RM 不稳定性发展规律; 可压缩湍流的形成与混合机理.   相似文献   

14.
采用高速纹影法实验研究了柱形汇聚激波与球形重气体界面相互作用的 Richtmyer-Meshkov不稳定性问题. 激波管实验段基于激波动力学理论设计, 将马赫数为1.2 的平面激波转化为柱形汇聚激波, 气体界面由肥皂膜分隔六氟化硫(内)和空气(外)得到. 采用高速摄影机在单次实验中拍摄激波运动的全过程, 对柱形激波的形成进行了实验验证, 并进一步观测了汇聚激波与球形气体界面相互作用过程中的波系发展和气体界面变形以及反射激波同已变形界面二次作用的流场演化. 结果表明: 当柱形汇聚激波穿过气泡界面以后, 气泡左侧界面极点沿激波传播方向保持匀速运动, 气泡右侧界面发展成为射流结构, 气泡主体发展成为涡环结构; 在反射激波的二次作用下, 流场中无序运动显著增强并很快进入湍流混合阶段.  相似文献   

15.
在Richtmyer-Meshkov(RM)不稳定性实验研究中,形成两种不同密度流体的初始扰动界面是前提和关健.本文提出了一种流动肥皂膜气体界面生成方法,其工作原理是由细丝构成的导流框从激波管实验段穿过,肥皂液从导流框的上端注入并在重力作用下在导流框中形成流动肥皂膜,膜的两测可以分别充入不同密度的气体从而形成稳定的气体...  相似文献   

16.
圆柱形汇聚激波诱导 Richtmyer-Meshkov不稳定的 SPH 模拟   总被引:3,自引:3,他引:0  
徐建于  黄生洪 《力学学报》2019,51(4):998-1011
汇聚激波诱导不同物质界面的Richtmyer-Meshkov(RM)不稳定现象在惯性约束核聚变领域有重要的学术意义和工程背景.基于网格离散的宏观流体力学方法由于数值扩散问题往往需要高阶精度算法才能准确追踪界面演化,且对大变形和破碎合并等复杂界面追踪也极为困难.光滑粒子流体动力学(smoothed particlehydrodynamics,SPH)方法采用纯拉格朗日算法,可以有效克服上述难点.但经典SPH算法需采用人工黏性处理强间断,在激波间断处往往会出现严重的非物理振荡,对于涉及强冲击不稳定性问题,很难达到理想的模拟效果.本文采用基于HLL黎曼求解器的SPH算法,实现了对强激波和大密度比物质界面的有效分辨和追踪.一维数值校核证明了代码的可靠性、健壮性,并进一步模拟了二维圆柱形汇聚冲击波冲击四边形轻/重气界面诱导的RM不稳定性问题,与已有实验结果进行了对比,发现模拟结果与实验结果吻合.通过分析界面演化过程中的密度及压力变化,发现本文所采用的方法可准确地追踪激波与界面作用的复杂界面和波系演化规律.研究结果为进一步理解和解释汇聚冲击条件下的RM不稳定性机理奠定了基础.   相似文献   

17.
It is explained under what condition instability develops in the wave front when a shock wave travels in a medium whose density is decreasing. It is shown that under laboratory conditions the buildup of such an instability may be suppressed by a diffusion of wave front segments into the walls of the system. Such an instability can occur, for example, in certain astrophysical bodies.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 24–27, May–June, 1972.  相似文献   

18.
实验研究了低马赫数(1.27)激波作用air/SF6界面的RM不稳定性问题.air/SF6初始正弦界面由厚度为1~2 μm的薄膜相隔得到,用阴影法测试界面演化过程.实验结果表明:由于不稳定性重流体(SF6)向轻流体(air)演化成“尖钉”结构,而轻流体演化为“气泡”结构;由于界面切向速度差的Kelvin-Helm-ho...  相似文献   

19.
The shock tube experiments of inclined air/SF6 interface instability under the shock wave with the Mach numbers 1.23 and 1.41 are conducted. The numerical simulation is done with the parallel algorithm and the multi-viscous-fluid and turbulence (MVFT) code of the large-eddy simulation (LES). The developing process of the interface accelerated by the shock wave is reproduced by the simulations. The complex wave structures, e.g., the propagation, refraction, and reflection of the shock wave, are clearly revealed in the flows. The simulated evolving images of the interface are consistent with the experimental ones. The simulated width of the turbulent mixing zone (TMZ) and the displacements of the bubble and the spike also agree well with the experimental data. Also, the reliability and effectiveness of the MVFT in simulating the problem of interface instability are validated. The more energies are injected into the TMZ when the shock wave has a larger Mach number. Therefore, the perturbed interface develops faster.  相似文献   

20.
The Richtmyer–Meshkov instability after reshock is investigated in shock tube experiments at the Wisconsin Shock Tube Laboratory using planar laser imaging and a new high-speed interface-tracking technique. The interface is a mixture of helium and argon (50% each by volume) stratified over pure argon. This interface has an Atwood number of 0.29 and a near single-mode, two-dimensional, standing wave perturbation with an average amplitude of 0.35?cm and a wavelength of 19.4?cm. The incident shock wave of Mach number 1.92 accelerates the interface before reflecting from the shock tube end wall with M =?1.70 and accelerating the interface in the opposite direction. The amplitude growth after reshock is reported for variations in this initial amplitude, and several amplitude growth rate models are compared to the experimental growth rate after reshock. A new growth model is introduced, based on a model of circulation deposition calculated from one-dimensional gas dynamics parameters. This model compares well with the amplitude growth rate after reshock and the circulation over one-half wavelength of the interface after the first shock wave and after reshock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号