首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
作为一种流行的被动投资组合管理策略,指数跟踪主要侧重于复制或跟踪金融指数的表现.以股指为例,传统的投资策略通常考虑指数所有成分股的完全复制.然而,随着指数成分股数量的增加,完全复制通常会受到流动性差以及成本高的影响.因此,投资者倾向于购买部分成分股进行资产配置.此外,在股票市场中,股票之间还存在明显的"组群"效应.基于...  相似文献   

2.
考虑高维部分线性模型,提出了同时进行变量选择和估计兴趣参数的变量选择方法.将Dantzig变量选择应用到线性部分及非参数部分的各阶导数,从而获得参数和非参数部分的估计,且参数部分的估计具有稀疏性,证明了估计的非渐近理论界.最后,模拟研究了有限样本的性质.  相似文献   

3.
传统函数型回归模型变量选择方法,忽略了对稀疏函数型数据的讨论.提出了稀疏函数型数据情形下函数型回归模型的变量选择方法,基于条件期望对稀疏函数型自变量进行函数型主成分分析,并以估计的正交特征函数作为基函数对模型进行展开.这种方法可以有效解决对稀疏函数型变量的选择.作为实证分析,选取2002年到2011年全国34个气象观测站的年降水量,月度平均气温,光照时长,湿度,最高气温和最低气温数据,分别比较讨论了密集和稀疏情形下,原始样本和Bootstrap样本的函数型回归模型变量选择的结果,结果显示新方法具有较好的选择效果.  相似文献   

4.
高维数据变量选择方法综述   总被引:2,自引:0,他引:2  
变量选择是统计学知识结构中不可或缺的一部分。本文归纳梳理了近二十年多来的变量选择方法,着重介绍了处理高维数据以及超高维数据的变量选择方法。最后我们通过一个实例比较了不同变量选择方法的差异性。  相似文献   

5.
本文针对带有组结构的广义线性稀疏模型,引入布雷格曼散度作为一般性的损失函数,进行参数估计和变量选择,使得该方法不局限于特定模型或特定的损失函数.本文比较研究了Ridge,SACD,Lasso,自适应Lasso,组Lasso,分层Lasso,自适应分层Lasso和稀疏组Lasso共8种惩罚函数的特点和引入模型后参数估计和...  相似文献   

6.
《数理统计与管理》2015,(6):978-988
变量选择是统计建模的重要环节,选择合适的变量可以建立结构简单、含义明确、预测精准的稳健模型。在实际应用中,有些变量具有群组结构,本文概括了三类群组变量选择惩罚方法,包括处理高度相关变量、仅选择组变量、即选择组又选择单个变量的方法,着重比较了它们的统计性质和优缺点,总结了相关算法和调整参数选择的方法。最后文章归纳了相关应用情况,并讨论了最新发展方向和所面临的挑战。  相似文献   

7.
以科技型中小企业为研究对象,从企业的盈利能力、成长能力、运营能力、偿债能力、供应链因素五方面选取了17个影响因素,运用带有非凸惩罚的SVM模型(SCAD SVM)模型对影响中小企业的信用风险因素进行研究,并选用LassoSVM和SVM作为对比,进行变量选择和参数估计,最后对模型的准确率进行预测,得出结论:Lasso SVM方法倾向于留下一些不太重要的变量,而SCAD SVM方法通过将系数大的变量保留,系数小的直接减小为0的方式,可以选择出重要的变量,通过预测精度验证发现,SCAD SVM方法比Lasso SVM和SVM的预测精度更高.  相似文献   

8.
主要研究因变量存在缺失且协变量部分包含测量误差情形下,如何对变系数部分线性模型同时进行参数估计和变量选择.我们利用插补方法来处理缺失数据,并结合修正的profile最小二乘估计和SCAD惩罚对参数进行估计和变量选择.并且证明所得的估计具有渐近正态性和Oracle性质.通过数值模拟进一步研究所得估计的有限样本性质.  相似文献   

9.
研究具有Log型惩罚函数的稀疏正则化,给出一种新的非凸变量选择及压缩感知策略,提出一种高效快速阈值迭代算法.并通过变量选择问题和稀疏信号重建验证了所提出的Log型稀疏正则化模型的有效性.  相似文献   

10.
庞洪 《大学数学》2002,18(5):109-110
提出“第一变量”和“弹性变量”的概念 .为了更好地在科学技术上使用数学工具 ,在此给同辈少许解决问题的线索 .  相似文献   

11.
EBT(Energy Bagging Tree)模型是基于能量距离的多元bagging,模型中的不纯度函数采用广义基尼均值差,分裂函数是样本落入分裂的两个子节点的概率和能量距离的乘积.新的变量选择方法基于EBT模型中分裂变量的频率,通过变量重要性的计算,为变量选择提供了依据.模拟分析显示,新方法和已有的多元随机森林算法在变量重要性排序的比较中具有优势.在建筑行业的混凝土实际数据上的表现进一步评估了新方法的性能.  相似文献   

12.
大数据的分布式统计学习引起了人们的广泛关注.已有方法存在两个显著问题.首先,它们都要求大数据以随机的方式存储在不同机器上,而这一点在实际中很难满足.其次,它们大都基于最小二乘,对重尾误差和异常值很敏感.为了解决这些问题,本文提出一个稳健的分布式众数回归,并且将其应用到非凸惩罚变量选择中.新方法克服了已有方法所需要的非随机分布假定,而且理论结果也证实了这个论断.随机模拟和实际数据分析也展示了新方法的良好表现.  相似文献   

13.
高血压是常见的心血管疾病,针对引起血压显著变化的影响因素开展深入研究对预防高血压及其并发症均具有重要意义.为此,根据11624个样本数据,选用Group Bridge方法对血压及其年龄、文化程度等8组共35个影响因素进行拟合分析.结果显示:Group Bridge方法能够提供科学有效的稀疏拟合结果;拟合结果共选定6组中的18个影响因素,其中存在正向影响关系的因素15个,负向影响关系的因素3个;综合考虑影响因素数量和强度,发现体格方面的影响因素对血压的影响最为重要,其次是体脂指标及生活方式和行为方面,再次为疾病家族史、年龄及文化程度,最后是婚姻状况及收入水平.  相似文献   

14.
高维回归分析的变量选择问题是目前统计学研究的一个热点和难点问题.提出了一个基于条件分布函数的相关性度量准则,并在此基础上提出三种变量选择方法.与现有的方法相比,提出的方法不依赖于统计模型,可以适用于线性模型和非参数可加模型.数值模拟结果表明,即使协变量之间存在一定的相关性,方法也有较为满意的表现.  相似文献   

15.
本文研究分位数回归的组变量选择问题。基于分位数回归和贝叶斯统计推断方法,通过引入系数的组“spike and slab”先验分布,提出了分位数回归的贝叶斯组变量选择方法,并给出易于实施的Gibbs后验抽样算法。进一步,本文还将所建立的贝叶斯组变量选择方法应用到变点检测中,变点的数量和位置的探测准确率较高。数值模拟和两个实例分析验证了所提方法的有效性。  相似文献   

16.
捕捉变量间相依结构中的非对称性有助于把握其间的地位关系.非对称乘法copula模型常用于刻画非对称相依结构,但在应用中面临模型选择问题.文章首次将正则化思想与非对称乘法copula模型相结合,并依据权重参数的群组结构对模型中各copula成分的权重施加group SCAD惩罚,构建惩罚似然函数,采用单步LLA算法得到权重的稀疏估计,自动剔除对模型整体贡献较小的copula成分,实现模型选择.同时,文章还给出了惩罚似然估计量的收敛率及其证明.在数值模拟中,文章所构建的模型选择方法具有较高的准确性与精度,在模型误设定的情形下则会选择出与真实模型最为接近的copula成分组合.在实证分析中,文章应用非对称乘法copula模型分析医药产业板块的横向与纵向关联,从结果来看本文的模型选择方法能较好地应对实际数据,选择出合适的copula成分组合,刻画板块相依结构中潜在的非对称性.  相似文献   

17.
向量自回归模型(VAR)广泛应用在对时间相依的多元时间序列建模中,但在高维数据建模中,自回归的系数膨胀可能导致噪音估计、不稳定的预测、解释上的困难等问题。在实际应用中,序列的真实模型往往具有稀疏性,因此运用稀疏VAR模型对高维时间序列进行建模,不仅可以解决高维数据带来的上述困难,也有利于寻找高维数据内在的真实模型。本文以10家公司的股票收益率为研究对象,采用3种不同的稀疏估计方法,不但分析了股票收益率之间的动态关系,而且通过实证分析展示了稀疏估计的优势。  相似文献   

18.
与传统的的媒体营销模式相比,搜索引擎广告因其精准和投入低等特点获得巨大成功。但已有的搜索引擎广告点击率模型不能有效解决数据量大及特征维度高的问题,使预测结果的准确性大打折扣。本文构建了一种基于LASSO变量选择方法的广告点击率预测模型,能有效克服现有广告点击率模型在处理数据高维性和稀疏性方面的不足。利用某公司的竞价数据对模型进行验证,结果表明影响广告点击率的关键因素是广告关键词中的商标信息、地域信息和每点击成本。该研究结果为企业制定搜索引擎广告营销策略提供一定的理论依据。  相似文献   

19.
压缩感知(compressed sensing,CS)是一种全新的信息采集与处理理论,它表明稀疏信号能够在远低于Shannon-Nyquist采样率的条件下被精确重构.现从压缩感知理论出发,对块稀疏信号重构算法进行研究,通过混合l2/lq(0相似文献   

20.
变量选择是统计建模中重要的问题。当试验数据维数很高时,传统变量选择方法的应用受到了很多制约。本文以高维混料试验为基础,比较了AIC准则和LASSO在变量选择问题上的优良性。通过实例验证,LASSO可以快速且准确地对高维混料模型中的变量进行筛选,从而得出最优模型,达到降低成本、提高利益的目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号