首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Accessing the NASA trapped radiation models AP-8 and AE-8 with (B,L) values obtained with modern geomagnetic field models causes an unrealistic secular increase of the predicted flux over low altitude orbits. We show the secular variation of the orbit-averaged particle flux along the LDEF orbit and the mission dose, obtained using the AP-8 trapped radiation models with an epoch-dependent magnetic field. The artificially increased epoch-dependent fluxes and doses are compared to the flux and dose obtained with a consistent and more correct procedure for predicting fluxes with the NASA models. This procedure has been implemented in the radiation analysis software package UNIRAD developed and distributed by BIRA-IASB.  相似文献   

2.
There has been considerable research on measurements and simulation of the cosmic radiation doses for aircrew. Most of this was made in the northern hemisphere and on routes between Europe, Asia and North America. The current work shows the results of measurements made onboard a military aircraft specifically in the South Atlantic Anomaly Region, comparing some active and passive instruments and the results from computational dose estimation with special concern about possible effects from the anomaly on the radiation doses.  相似文献   

3.
Measurements of the radiation environment inside the Mir space station were performed with a tissue equivalent proportional counter (TEPC) during the Antares mission in 1992, and over a long period following it. Interesting results concerning radiation measurements show (a) the South Atlantic Anomaly crossing, (b) the increase of radiation near the poles, and (c) the effects of solar particle events (the most important one occurring in early November 1992). This data also provides information about the dose and the quality factor of the radiation to which the cosmonauts were exposed during different missions. These data are compared with measurements obtained using a solid state detector.  相似文献   

4.
A tissue equivalent proportional counter designed to measure the linear energy transfer spectra (LET) in the range 0.2-1250 keV/micrometer was flown in the Kvant module on the Mir orbital station during September 1994. The spacecraft was in a 51.65 degrees inclination, elliptical (390 x 402 km) orbit. This is nearly the lower limit of its flight altitude. The total absorbed dose rate measured was 411.3 +/- 4.41 microGy/day with an average quality factor of 2.44. The galactic cosmic radiation (GCR) dose rate was 133.6 microGy/day with a quality factor of 3.35. The trapped radiation belt dose rate was 277.7 microGy/day with an average quality factor of 1.94. The peak rate through the South Atlantic Anomaly was approximately 12 microGy/min and nearly constant from one pass to another. A detailed comparison of the measured LET spectra has been made with radiation transport models. The GCR results are in good agreement with model calculations; however, this is not the case for radiation belt particles and again points to the need for improving the AP8 omni-directional trapped proton models.  相似文献   

5.
Radiation measurements made onboard the MIR Orbital Station have spanned nearly a decade and covered two solar cycles, including one of the largest solar particle events, one of the largest magnetic storms, and a mean solar radio flux level reaching 250 x 10(4) Jansky that has been observed in the last 40 years. The cosmonaut absorbed dose rates varied from about 450 microGy day-1 during solar minimum to approximately half this value during the last solar maximum. There is a factor of about two in dose rate within a given module, and a similar variation from module to module. The average radiation quality factor during solar minimum, using the ICRP-26 definition, was about 2.4. The drift of the South Atlantic Anomaly was measured to be 6.0 +/- 0.5 degrees W, and 1.6 +/- 0.5 degrees N. These measurements are of direct applicability to the International Space Station. This paper represents a comprehensive review of Mir Space Station radiation data available from a variety of sources.  相似文献   

6.
A joint investigation between the United States and Russia to study the radiation environment inside the Space Shuttle flight STS-60 was carried out as part of the Shuttle-Mir Science Program (Phase 1). This is the first direct comparison of a number of different dosimetric measurement techniques between the two countries. STS-60 was launched on 3 February 1994 in a nearly circular 57 degrees x 353 km orbit with five U.S. astronauts and one Russian cosmonaut for 8.3 days. A variety of instruments provided crew radiation exposure, absorbed doses at fixed locations, neutron fluence and dose equivalent, linear energy transfer (LET) spectra of trapped and galactic cosmic radiation, and energy spectra and angular distribution of trapped protons. In general, there is good agreement between the U.S. and Russian measurements. The AP8 Min trapped proton model predicts an average of 1.8 times the measured absorbed dose. The average quality factor determined from measured lineal energy, y, spectra using a tissue equivalent proportional counter (TEPC), is in good agreement with that derived from the high temperature peak in the 6LiF thermoluminescent detectors (TLDs). The radiation exposure in the mid-deck locker from neutrons below 1 MeV was 2.53 +/- 1.33 microSv/day. The absorbed dose rates measured using a tissue equivalent proportional counter, were 171.1 +/- 0.4 and 127.4 +/- 0.4 microGy/day for trapped particles and galactic cosmic rays, respectively. The combined dose rate of 298.5 +/- 0.82 microGy/day is about a factor of 1.4 higher than that measured using TLDs. The westward longitude drift of the South Atlantic Anomaly (SAA) is estimated to be 0.22 +/- 0.02 degrees/y. We evaluated the effects of spacecraft attitudes on TEPC dose rates due to the highly anisotropic low-earth orbit proton environment. Changes in spacecraft attitude resulted in dose-rate variations by factors of up to 2 at the location of the TEPC.  相似文献   

7.
Effects of trapped proton flux anisotropy on dose rates in low Earth orbit.   总被引:1,自引:0,他引:1  
Trapped protons in the South Atlantic Anomaly (SAA) have a rather narrow pitch angle distribution and exhibit east-west anisotropy. In low Earth orbits, the E-W effect results in different amounts of radiation dose received by different sections of the spacecraft. This effect is best studied on missions in which the spacecraft flies in a fixed orientation. The magnitude of the effect depends on the particle energy and altitude through the SAA. In this paper, we describe a clear example of this effect from measurements of radiation dose rates and linear energy transfer spectra made on Space Shuttle flight STS-94 (28.5 degree inclination x 296 km altitude). The ratio of dose rates from the two directions at this location in the mid-deck was 2.7. As expected from model calculations, the spectra from the two directions are different, that is the ratio is energy dependent. The data can be used to distinguish the anisotropy models. The flight carried an active tissue equivalent proportional counter (TEPC), and passive thermoluminscent detectors (TLDs), and two types of nuclear emulsions. Using nuclear emulsions, charged particles and secondary neutron energy spectra were measured. The combined galactic cosmic radiation+trapped charged particle lineal energy spectra measured by the TEPC and the linear energy transfer spectrum measured by nuclear emulsions are in good agreement. The charged particle absorbed dose rates varied from 112 to 175 microGy/day, and dose equivalent rates from 264.3 to 413 microSv/day. Neutrons in the 1-10 MeV contributed a dose rate of 3.7 microGy/day and dose equivalent rate of 30.8 microSv/day, respectively.  相似文献   

8.
Measurements on board the MIR space station by the Bulgarian-Russian dosimeter LIULIN have been used to study the solar cycle variations of the radiation environment. The fixed locations of the instrument in the MIR manned compartment behind 6-15 g/cm2 of shielding have given homogeneous series of particle fluxes and doses measurements to be collected during the declining phase of 22nd solar cycle between September 1989 and April 1994. During the declining phase of 22nd solar cycle the GCR (Galactic Cosmic Rays) flux observed at L>4 (where L is the McIlwain parameter) has enhanced from 0.6-0.7 cm-2 s-1 up to 1.4-1.6 cm-2 s-1. The long-term observations of the trapped radiation can be summarized as follows: the main maximum of the flux and dose rate is located at the southeast side of the geomagnetic field minimum of South Atlantic Anomaly (SAA) at L=1.3-1.4. Protons depositing few (nGy cm2)/particle in the detector predominantly populate this region. At practically the same spatial location and for similar conditions the dose rate rises up from 480 to 1470 microGy/h dose in silicon in the 1990-1994 time interval, during the declining phase of the solar cycle. On the other hand the flux rises from 35 up to 115 cm-2 s-1 for the same period of time. A power law dependence was extracted which predicts that when the total neutral density at the altitude of the station decreases from 8x10(-15) to 6x10(-16) g/cm3 the dose increase from about 200 microGy/h up to 1200 microGy/h. At the same time the flux increase from about 30 cm-2 s-1 up to 120 cm-2 s-1. The AP8 model predictions give only 5.8% increase of the flux for the same conditions.  相似文献   

9.
Time-resolved radiation dosimetry measurements inside the crew compartment have been made during recent Shuttle missions with the U.S. Air Force Radiation Monitoring Equipment-III (RME-III), a portable battery-powered four-channel tissue equivalent proportional counter. Results from the first six missions are presented and discussed. Half of the missions had orbital inclinations of 28.5 degrees with the remainder at inclinations of 57 degrees or greater; altitudes ranged from 300 to 600 km. The determined dose equivalent rates ranged from 70 to 5300 microSv/day. The RME-III measurements are in good agreement with other dosimetry measurements made aboard the vehicles. Measurements indicate that medium- and high-LET particles contribute less than 2% of the particle fluence for all missions, but up to 50% of the dose equivalent, depending on the spacecraft's altitude and orbital inclination. Isocontours of fluence, dose and dose equivalent rate have been developed from measurements made during the STS-28 mission. The drift rate of the South Atlantic Anomaly is estimated to be 0.49 degrees W/yr and 0.12 degrees N/yr. The calculated trapped proton and GCR dose for the STS-28 mission was significantly lower than the measured values.  相似文献   

10.
Measurements of the secondary particle energy spectra in the Space Shuttle   总被引:2,自引:0,他引:2  
Measurements of the energy spectra of secondary particles produced by galactic cosmic rays and trapped protons due to the nuclear interactions of these particles with the Shuttle shielding provide a powerful tool for validating radiation transport codes. A code validated in this way can be used to better estimate the dose and dose equivalent to body organs, measurements that cannot be made directly. The principal cause of single event upsets in electronic devices in the region of the South Atlantic Anomaly is secondary particles, and even in the region of galactic cosmic radiation a significant fraction is produced by secondary particles. In this paper, we describe the first direct measurements of the energy spectra of secondary protons, deuterons, tritons, 3He and 4He produced by galactic cosmic rays inside the Space Shuttle using a charged particle spectrometer. A comparison of these spectra with radiation transport code HZETRN showed reasonably good agreement for secondary protons. However, the code seriously underestimated the flux of all other light ions. The code has been modified to include pick-up and knock-on processes. The modified code leads to good agreement for deuterons and 3He but not for other light ions. This revised code leads to about 10% higher dose equivalent than the original code under moderate shielding, if we assume that higher charge ion fluxes are correctly predicted by the model.  相似文献   

11.
Space radiation dosimetry measurements have been made on board the Space Shuttle STS-65 in the Second International Microgravity Laboratory (IML-2). In these measurements, three kinds of detectors were used; one is a newly developed active detector telescope called “Real-time Radiation Monitoring Device (RRMD)” utilizing silicon semi-conductor detectors and others are conventional detectors of thermoluminescence dosimeters (TLDs) and CR-39 plastic track detectors. Using the RRMD detector, the first attempt of real-time monitoring of space radiation has been achieved successfully for a continuous period of 251.3 h, giving the temporal variations of LET distribution, particle count rates, and rates of absorbed dose and dose equivalent. The RRMD results indicate that a clear enhancement of the number of trapped particles is seen at the South Atlantic Anomaly (SAA) without clear enhancement of dose equivalent, while some daily periodic enhancements of dose equivalent due to high LET particles are seen at the lower geomagnetic cutoff regions for galactic cosmic ray particles (GCRs). Therefore, the main contribution to dose equivalent is seen to be due to GCRs in this low altitude mission (300 km). Also, the dose equivalent rates obtained by TLDs and CR-39 ranged from 146.9 to 165.2 μSv/day and the average quality factors from 1.45 to 1.57 depending on the locations and directions of detectors inside the Space-lab at this highly protected orbit for space radiation with a small inclination (28.5°) and a low altitude (300 km). The LET distributions obtained by two different detectors, RRMD and CR-39, are in good agreement in the region of 15–200 keV/mm and difference of these distributions in the regions of LET < 15 keV/mm and LET > 200 keV/mm can be explained by considering characteristics of CR-39 etched track formation especially for the low LET tracks.  相似文献   

12.
In space, radiation effects in which a large amount of energy is transferred by a single particle are observed. These effects can be caused by either the direct ionization of a cosmic ray heavy ion or alternatively by the ionization of short range target fragments which are produced inside the material by interactions of cosmic ray particles. Protons of the lower radiation belt contribute significantly to target fragmentation; especially in the South Atlantic Anomaly (SAA). To allow predictions of possible radiation hazards the characteristics of these interactions at energies below 100 MeV must be understood in detail. We have performed an experiment to measure the proton induced fragmentation cross sections for carbon target nuclei at about 70 MeV/nucleon and to determine some characteristics of the kinematics of the target fragments. For this purpose experimental setups with CR-39 track detectors were used. In this paper we describe the experimental technique and present some preliminary results.  相似文献   

13.
The average absorbed dose and dose equivalent rates from space radiation were observed using passive dosimeters with same material and configuration at the same location onboard the International Space Station (ISS) over four different occasions (I–IV) between 2007 and 2008. The passive dosimeters consisted of a combination of thermoluminescent detectors (TLDs) and plastic nuclear track detectors (PNTDs). Total average absorbed dose rate increased by 68 ± 9% over two years. The observed increase was due to the incremental increase in the altitude of the ISS over the course of the experiment and the corresponding increase in trapped proton flux encountered during passage of the ISS through the SAA (South Atlantic Anomaly), which was confirmed with the results monitored by DB-8 active dosimeter on the ISS. The PNTD data showed that the average absorbed dose and dose equivalent rates from particles of LETH2O ≥ 100 keV/μm were 28 ± 2% and 51 ± 3% of ≥10 keV/μm during Periods I–III, while the dose contributions of particles ≥100 keV/μm during Period IV were 36 ± 5% and 59 ± 10%, respectively. The integral dose equivalent distribution during Period IV shows significant enhancement from particles ≥100 keV/μm. These facts suggest that a significant fraction of the high LET component is due to short-range recoil nuclei produced in target fragmentation reactions between primary protons and the nuclei of the passive dosimeters and surrounding materials.  相似文献   

14.
This paper reviews and extends modelling of anisotropic fluxes for radiation belt protons to provide closed-form equations for vector proton fluxes and proton flux anisotropy in terms of standard omnidirectional flux models. These equations provide a flexible alternative to the data-based vector flux models currently available. At higher energies, anisotropy of trapped proton flux in the upper atmosphere depends strongly on the variation of atmospheric density with altitude. Calculations of proton flux anisotropies using present models require specification of the average atmospheric density along trapped particle trajectories and its variation with mirror point altitude. For an isothermal atmosphere, calculations show that in a dipole magnetic field, the scale height of this trajectory-averaged density closely approximates the scale height of the atmosphere at the mirror point of the trapped particle. However, for the earth's magnetic field, the altitudes of mirror points vary for protons drifting in longitude. This results in a small increase in longitude-averaged scale heights compared to the atmospheric scale heights at minimum mirror point altitudes. The trajectory-averaged scale heights are increased by about 10-20% over scale heights from standard atmosphere models for protons mirroring at altitudes less than 500 km in the South Atlantic Anomaly. Atmospheric losses of protons in the geomagnetic field minimum in the South Atlantic Anomaly control proton flux anisotropies of interest for radiation studies in low earth orbit. Standard atmosphere models provide corrections for diurnal, seasonal and solar activity-driven variations. Thus, determination of an "equilibrium" model of trapped proton fluxes of a given energy requires using a scale height that is time-averaged over the lifetime of the protons. The trajectory-averaged atmospheric densities calculated here lead to estimates for trapped proton lifetimes. These lifetimes provide appropriate time-averaging intervals for equilibrium models of trapped proton fluxes.  相似文献   

15.
Flight data obtained between 1990 and 1997 from the Cosmic Radiation Environment Monitors CREAM & CREDO carried on UoSAT-3, Space Shuttle, STRV-1a (Space Technology Research Vehicle) and APEX (Advanced Photovoltaic and Electronics Experiment Spacecraft) provide coverage over half a solar cycle. The modulation of cosmic rays and evolution of the South Atlantic Anomaly are observed, the former comprising a factor of three increase at high latitudes and the latter a general increase accompanied by a north-westward drift. Comparison of particle fluxes and linear energy transfer (LET) spectra is made with improved environment & radiation transport calculations which account for shield distributions and secondary particles. While there is an encouraging convergence between predictions and observations, significant improvements are still required, particularly in the treatment of locally produced secondary particles. Solar-particle events during this time period have LET spectra significantly below the October 1989 event which has been proposed as a worst case model.  相似文献   

16.

Geomagnetically trapped electrons and positrons with energy above 50 MeV were observed in PAMELA experiment on board Resurs DK satellite. The instrument consists of magnetic spectrometer, imaging electromagnetic calorimeter, time-of-flight system, anticoincidence and neutron detectors that provide unique particle identification and background rejection. PAMELA was collecting data since June 2006 till January 2016. The satellite orbit with initial altitude 350–600 km and inclination 70° crosses the inner radiation belt in South Atlantic Anomaly at L-shell ∼1.2. The trapped electrons and positrons were selected on the basis of a trajectory simulation in the Earth magnetic field. Features of the energy spectra of electrons and positrons at low energies are analyzed.

  相似文献   

17.
A telescopic device with charge coupled devices (CCDs) for particle dosimetry in space has been developed. Data on ionization events of energetic particles passing the CCDs are processed in an image analyzing system of a PC. As ‘Charged Particle Telescope’ (CHAPAT), the equipment was flown on the russian space station MIR during the EUROMIR mission in 1995. The response of the CCDs to various charged particles and methods for the discrimination of heavy particles in CCDs are discussed. First results of a correlation of temporal particles fluxes to the actual orbital parameters of MIR clearly identify passages through the South Atlantic Anomaly (SAA).  相似文献   

18.
Four experiments utilizing passive detectors (P0006, P0004, A0015, M0004) were flown on LDEF to study the radiation environment. These experiments have been summarized in a companion paper (Benton et al., 1996). One of the experimental goals was to measure LET spectra at different locations and shielding depths with plastic nuclear track detectors (PNTD). It was found that the LET spectra extended well above the LET cutoff imposed by the geomagnetic field on GCR particle penetration into LEO. The high LET particles detected were mostly short-range (range < 2000 μm), indicating that they were secondaries produced locally within the PNTD. The presence of these high LET particle fluences is important for the determination of dose equivalent because of the high Quality Factors (Q) involved. A relatively small fraction of particle fluence can contribute a large fraction of dose equivalent.

Short-range, inelastic secondary particles produced by trapped protons in the South Atlantic Anomaly (SAA) were found to be a major contributor to the LET spectra above 100 keV/μm. The LET spectra were found to extend beyond the 137 keV/μm relativistic GCR Fe peak to over 1000 keV/μm. The high LET tail of the LET spectra was measured in CR-39 and polycarbonate PNTDs using different techniques. GCR made a relatively modest contribution to the LET spectra as compared to the contributions from short-range secondary particles and stopping protons.

LET spectra intercomparisons were made between LDEF measurements and exposures to 154 MeV accelerated proton beams. The similarities support the role of nuclear interactions by trapped protons as the major source of secondary particles in the PNTDs. Also techniques were employed to reduce the range cutoff for detection of the short-range secondaries to 1 μm, so that essentially all secondary particles were included in the LET spectra. This has allowed a more realistic assessment of secondary contribution to dose equivalent.

Comparisons of measured and calculated LET spectra have been made that demonstrate the need for more accurate modeling of secondary particles in radiation transport codes. Comparisons include preliminary calculations in which attempts have been made to include secondary particles.  相似文献   


19.
Intensity Modulated Radiation Therapy (IMRT) is an advanced mode of high precision radiation therapy that uses computer controlled linear accelerators to deliver precise radiation doses to a malignant tumor or specific areas within the tumor. This is achieved using a more precise adjustment of the beam to the three dimensional shape of the tumor by modulating or controlling the intensity of the radiation beam in multiple small volumes. IMRT also allows higher radiation doses to be focused to regions within the tumor while minimizing the dose to surrounding normal critical structures. This work aims at determining the radiation dose in two target volumes (tumors) treated at same time and the scattered dose distribution in organs at risk using thermoluminescent dosimeters of LiF:Mg,Ti for IMRT treatment technique and a polymethylmethacrylate (PMMA) phantom. The shortest distance between the cavities 1 and 2 that simulate tumors is 1.5 cm and the shortest distances from the cavity 1 to the cavities 3, 4 and 5 are, respectively, 1.9 cm, 2.2 cm and 2.65 cm. The shortest distance from the cavity 2 to cavities 3, 4 and 5 are, respectively, 5.4 cm; 5.7 cm and 1.5 cm. The relative difference for the doses measured by TLD-100 and provided by the TPS were +3.7% and −1.38%. The out-of-target doses received by cavities 3, 4 and 5 corresponded on average to 19.36, 17.84% and 6.72% of the highest dose received by the cavity 1 and the doses received by cavities 3, 4 and 5 corresponded on average to 29.51%, 27.20% and 10.24% of the dose received by cavity 2.  相似文献   

20.
The goal of this intercomparison is to determine the peripheral doses during treatment of prostate and head and neck (H&N) cancers. In the case of prostate cancer, two different treatment techniques are compared: intensity-modulated radiation therapy (IMRT – 10 MV and 18 MV), on a Varian Clinac 2100 C/D and Tomotherapy. VMAT (also on a Varian Clinac 2100 C/D) was compared to Tomotherapy, for H&N cancer. The treatment devices are located at the university hospitals of Leuven and Brussels, respectively. A common treatment protocol was agreed between the two clinical centers and this same protocol was used by each partner. For the higher energy modalities (10 MV and 18 MV) we also assessed the neutron contribution to the total dose, by using bubble detectors. In this way, the performance (in terms of peripheral doses) of the different treatment techniques, when faced with the same dose distribution constraints, was evaluated. The doses were evaluated with an anthropomorphic phantom loaded with TLD detectors. Summarizing our results, we can conclude that low energy radiation techniques, namely VMAT and Tomotherapy, have more interesting performances when compared to IMRT at energies of 10 MV and 18 MV, with respect to peripheral dose. On the one hand the former are associated with lower photon doses and, on the other hand, there is no contribution from neutrons to the total dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号