首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
以氯甲基化交联聚苯乙烯树脂(CMCPS)为载体和大分子引发剂,1-乙烯基咪唑(VIM)为单体,溴化亚铜/2,2'-联吡啶为催化剂体系,采用表面引发原子转移自由基聚合技术(SI-ATRP),将1-乙烯基咪唑接枝到CMCPS树脂表面,制得新型咪唑型螯合树脂(VIM-CMCPS),并采用X射线光电子能谱、元素分析和扫描电镜对其进行表征。考察了该螯合树脂对Cd2+和Zn2+的吸附性能、动力学和热力学参数。该螯合树脂表面VIM接枝密度达1.008 mg/m2。结果表明,该树脂对Cd2+和Zn2+的吸附量随溶液初始浓度和温度的升高而增加,当p H值分别为3.6和2.4时,对Cd2+和Zn2+的吸附效果最佳,树脂的静态饱和吸附容量分别为653.1 mg/g和793.3 mg/g,Langmuir和Freundlich方程均呈现良好的拟合度。热力学平衡方程计算得ΔG0,ΔH=24.47 k J/mol,ΔS0,表明该吸附过程是自发、吸热、熵增加的过程。动力学研究表明,该过程符合准二级动力学模型。  相似文献   

2.
改性层状双氢氧化物对铜离子(Ⅱ)和双酚A的协同吸附   总被引:1,自引:0,他引:1  
李燕  王国旺  王宁 《应用化学》2015,32(7):816-824
采用离子交换法制备了十二烷基苯磺酸根(DBS-)和柠檬酸根(Cit3-)复合改性层状双氢氧化物(LDHs),简写为DBS-Cit-LDHs。 利用粉末X射线衍射分析、红外光谱分析、比表面积测定以及元素分析等技术手段对样品进行了表征。 结果表明,DBS-和Cit3-已柱撑进入LDHs层间。 研究了DBS-Cit-LDHs对水中重金属离子Cu2+和有机污染物双酚A(BPA)的协同吸附性能。 吸附实验结果表明,DBS-Cit-LDHs能同时高效去除Cu2+和BPA;对Cu2+的强吸附能力缘于DBS-Cit-LDHs层间Cit3-与Cu2+形成了稳定配合物;对BPA的强吸附能力缘于分配作用,且吸附能力与样品比表面积无关。 DBS-Cit-LDHs对Cu2+的吸附动力学和热力学分别符合准二级动力学方程和Freundlich等温式;对BPA的吸附分别符合准一级动力学方程和Linear等温式。 二者吸附过程的ΔGo和ΔHo均为负值,表明吸附为自发放热过程。  相似文献   

3.
以氯甲基化聚苯乙烯树脂(CMPS)为基质, 通过表面引发原子转移自由基聚合(SI-ATRP)反应将聚甲基丙烯酸缩水甘油酯(PGMA)接枝到树脂表面, 再与亚氨基二乙酸(IDA)反应, 制备了一种新型螯合树脂. 采用红外光谱、 元素分析及比表面积与微孔分析仪对其结构进行表征. 树脂表面甲基丙烯酸缩水甘油酯(GMA)接枝量和IDA含量及对Ni(Ⅱ), Cu(Ⅱ)和Pb(Ⅱ)的吸附容量均随聚合时间的延长而增大, 聚合时间为18 h时, 最大吸附容量分别为1.29, 1.19和0.83 mmol/g. 结果表明, SI-ATRP是制备高吸附容量及吸附容量可控的螯合树脂的可行方法.  相似文献   

4.
以环氧环己烷作为改性单体,通过环氧氯丙烷与环氧环己烷阳离子开环聚合获得分子量约为3000的共聚醚主链。然后以联苯为介晶基元、亚氨基二乙酸为末端螯合基团,成功合成了一种新型结构的侧链液晶聚醚螯合树脂。在对其结构鉴定以及基础物理性质测定的基础上,系统地研究了该树脂对水中Cu2+吸附的影响因素、再生性能、吸附选择性、吸附模型以及吸附动力学。结果表明,该树脂对Cu2+具有良好的吸附性能、再生性能和选择性,其对水中Cu2+的吸附为Langmuir单分子层吸附,吸附过程符合准二级动力学模型。  相似文献   

5.
以氯甲基化交联聚苯乙烯树脂(CMCPS)为载体和大分子引发剂,溴化亚铜/2,2’-联吡啶为催化剂体系,采用了表面引发原子转移自由基聚合技术(SI-ATRP),将丙烯酰胺接枝到CMCPS树脂表面,制得了新型聚丙烯酰胺树脂(PAM-CMCPS),并且用元素分析、扫描电镜和红外光谱对其进行了表征。考察了此树脂对2,4-二氯苯氧乙酸的吸附性能、动力学和热力学参数。结果表明,此树脂对2,4-二氯苯氧乙酸的吸附量随溶液初始浓度和温度的升高而增加,当初始浓度为8 mmol/L时吸附效果最佳,树脂的静态饱和吸附容量为111.0 mg/g,Langmuir和Freundlich方程都呈现良好的拟合度。热力学平衡方程计算得ΔG<0,ΔH=268.2 k J/mol,ΔS>0,表明此吸附过程是一个自发、吸热、熵增加的过程。动力学研究表明,准二级动力学方程能较好拟合动力学实验结果,该过程符合准二级动力学模型。此PAM-CMCPS树脂应用于柑橘样品中2,4-二氯苯氧乙酸的吸附,取得了较满意的结果。  相似文献   

6.
新型含氮、硫纤维素螯合树脂的合成及其吸附性能   总被引:22,自引:0,他引:22  
将稻壳纤维素的氯化产物(CDC)分别与水合肼、乙二胺、二乙烯三胺、三乙烯四胺、丁二胺和己二胺反应,合成了6种含氮纤维素螯合树脂(ADC-1~ADC-6);在碱性条件下用环硫氯丙烷交联ADC合成了6种新型含氮、硫纤维素螯合树脂(TADC-1~TADC-6),研究了合成条件和ADC,TADC树脂对金属离子的吸附性能.结果表明,ADC树脂对Cu2+,Cr3+,Ni2+,Hg2+,Zn2+等离子有较好的吸附性,对Hg2+吸附容量可达0.5mmol/g左右;TADC树脂对Ag+,Cu2+,Hg2+等离子有较好的吸附性,对Hg2+和Ag+吸附容量可达1.1mmol/g和1.9mmol/g左右;强酸性条件下,ADC和TADC树脂的吸附容量都降低,它们对金属离子的吸附顺序分别为Hg2+>Cu2+>Ni2+和Ag+>Hg2+>Cu2+,树脂用10%的氨水解吸附可重复使用.  相似文献   

7.
油页岩飞灰对重金属离子的吸附动力学及热力学   总被引:8,自引:0,他引:8  
采用批式振荡吸附法研究了燃油页岩电厂循环流化床锅炉飞灰对重金属离子Pb2+、Cu2+、Zn2+、Cd2+的吸附动力学及吸附热力学特性,并提出了吸附机理。结果表明,油页岩飞灰对Pb2+、Cu2+、Zn2+、Cd2+的吸附平衡数据符合Langmuir和Freundlich吸附等温方程,但Freundlich方程能够更好地描述吸附等温线。在油页岩飞灰对重金属离子吸附的初始阶段,拉格朗日准一级动力学方程、准二级动力学方程、Elovich方程、粒子内扩散模型均能很好地反映吸附模式,而整个吸附过程则遵循二级反应动力学方程,其吸附过程是液膜扩散和粒子内扩散共同作用的结果。油页岩飞灰对Pb2+、Cu2+、Zn2+、Cd2+的吸附是吸热反应。  相似文献   

8.
为揭示外加电解质离子强度对重金属离子吸附的影响规律与内在机制, 制备了膨润土/木质素磺酸钠接枝丙烯酰胺-马来酸酐复合吸附树脂(BLPAMA), 研究了外加电解质离子强度对BLPAMA吸附单一和二元Pb2+/Cu2+的影响规律, 以及有、无外加0.2 mol/L NaNO3时BLPAMA对二元Pb2+/Cu2+的吸附等温线、吸附热力学及吸附动力学。 结果表明, 在单一Pb2+或Cu2+溶液中, 随离子强度增加, Pb2+和Cu2+吸附量降低;在二元Pb2+/Cu2+溶液中, 随离子强度增加, Pb2+吸附量降低而Cu2+吸附量提高。  相似文献   

9.
本文以KMnO4改性处理的柏树锯末为吸附剂,对溶液中的Cu2+吸附去除。结果表明,改性锯末增大了孔径和比表面积,吸附剂表明吸附位点增多,当pH=7、吸附剂用量1 g·L-1及温度318 K的条件下吸附效果最佳。改性柏树锯末对Cu2+的吸附动力学和等温线线性拟合结果分别符合准二级动力学方程和Langmuir吸附等温模型,说明该吸附过程是单分子层吸附,并以化学吸附为主。  相似文献   

10.
邱从交  刘美玲  李海涛 《应用化学》2010,27(9):1042-1045
将氨基吡啶功能基引入亲水性大孔球状聚甲基丙烯酸环氧丙酯(PGMA),合成了高亲水性的氨基吡啶螯合树脂(PGMA-AP),考察了该树脂对Hg2+、Pb2+、Cu2+、Ni2+等重金属离子的静态吸附性能及影响因素。 结果表明,该树脂对上述4种重金属离子在25 ℃时的静态饱和吸附容量分别为2.145、1.715、1.023和0.654 mmol/g,最佳吸附pH值为4.5~5.0,吸附性能随温度升高而改善,在实验浓度范围内该树脂对上述重金属离子的等温吸附符合Langmuir和Freundlich方程。  相似文献   

11.
采用表面引发原子转移自由基聚合(SI-ATRP)方法将丙烯腈(AN) 接枝到氯甲基化聚苯乙烯树脂(PS-CH2Cl) 表面, 再与叠氮化钠进行3+2环加成反应, 制备了一种聚乙烯四唑型螯合树脂(PVT-g-PS). 用红外光谱和元素分析对PVT-g-PS树脂进行了表征, 考察了该树脂对Pb(Ⅱ), Ni(Ⅱ)和Cd(Ⅱ)的吸附性能. 在一定聚合时间范围内, 丙烯腈接枝率与SI-ATRP时间呈线性关系, 树脂表面四唑含量及树脂对金属离子的吸附容量随丙烯腈接枝率增大而增大, 说明丙烯腈在树脂表面聚合为活性可控聚合, 树脂表面功能团含量和树脂吸附容量可以用聚合时间调控. 通过分析树脂吸附容量与溶液pH值的关系、 吸附等温线和吸附动力学, 证明3种金属离子的吸附主要是基于配位作用的化学吸附. 当SI-ATRP时间为10 h时, 树脂对Pb(Ⅱ), Ni(Ⅱ)和Cd(Ⅱ)吸附容量高达1.57, 1.68和1.92 mmol/g. 经过10次吸附-解吸循环实验, 树脂的吸附容量无显著变化, 表明新型树脂具有较高的吸附量和良好的重复使用性.  相似文献   

12.
Well‐defined high oil‐absorption resin was successfully prepared via living radical polymerization on surface of polystyrene resin‐supported N‐chlorosulfonamide group utilizing methyl methacrylate and butyl methacrylate as monomers, ferric trichloride/iminodiacetic acid (FeCl3/IDA) as catalyst system, pentaerythritol tetraacrylate as crosslinker, and L ‐ascorbic acid as reducing agent. The polymerization proceeded in a “living” polymerization manner as indicated by linearity kinetic plot of the polymerization. Effects of crosslinker, catalyst, macroinitiator, reducing agent on polymerization and absorption property were discussed in detail. The chemical structure of sorbent was determined by FTIR spectrometry. The oil‐absorption resin shows a toluene absorption capacity of 21 g g?1. The adsorption of oil behaves as pseudo‐first‐order kinetic model rather than pseudo‐second‐order kinetic model. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

13.
Gao Y  Oshita K  Lee KH  Oshima M  Motomizu S 《The Analyst》2002,127(12):1713-1719
Chelating resins, two kinds of iminodiacetate derivatives (IDA) of cross-linked chitosan (CCS) were synthesized and investigated for adsorption capacity, matrix elimination and collection/concentration of analytes by a column pretreatment in a multi-element ICP-MS determination method. The adsorption behavior of 54 elements at the 10 ng ml(-1) level on chitosan derivatives in a packed mini-column was systematically examined. Almost 30 kinds of metal ions were recovered quantitatively at pH 5 with CCS-HP/IDA (cross-linked chitosan possessing N-2-hydroxypropyl iminodiacetic acid groups) column. Compared with available chitosan-iminodiacetate resin, CHITOPEARL CI-03, the recovery of the metal ions such as Cu, Pb and La is satisfactory with CCS-IDA (cross-linked chitosan possessing N,N-iminodiacetic acid groups) and CCS-HP/IDA using 2 M nitric acid as an eluent, which may be attributed to the difference of cross-linking and macroporous structure. Compared with Chelex-100, the adsorption efficiency is in the order: Chelex-100 > CCS-IDA > CCS-HP/IDA, especially in the chelating ability for alkaline earth metals. The resin with a longer spacer (CCS-HP/IDA) showed higher adsorption selectivity between heavy metal ions and alkaline earth metals at pH < 7. The separation efficiency of the major matrix cations in seawater (Na. K, Mg, Ca) has also been investigated, and matrix interference was negligible even in a seawater sample at pH 5 with CCS-HP/IDA. The recoveries of Mn at pH 5 with CCS-HP/IDA or Chelex-100 were almost 100%. However, those of Mg with each resin were 4 or 98%, respectively. The adsorption capacities of synthesized CCS-HP/IDA for Cu(II), Pb(II) and La(III) were 0.90, 0.65 and 0.34 mmol g(-1), respectively. Therefore, the chelating chitosan resins developed are applicable to the pretreatment of trace amounts of elements in various kinds of water samples.  相似文献   

14.
The adsorption of zinc and cyanide from cyanide effluents onto strong and weak basic anion exchange resins was studied in a batch adsorption system. Factors influencing the adsorption rates such as resin selection, resin amounts, contact time and temperature were studied and scanning electron microscopy-energy disperse spectroscopy(SEM-EDS) was used in the analysis. The present study shows that the adsorption capacity of resin 201×7 is better than that of resin 301. The adsorption process was relatively fast and came to equilibrium after 60 min. The kinetic data were analyzed with three models and the pseudo-second-order kinetic model was found to agree with the experimental data well. The equilibrium data could also be described well by Langmuir isotherm model. Thermodynamic parameters such as enthalpy change(ΔH0), free energy change(ΔG0) and entropy change(ΔS0) were calculated and the adsorption process was spontaneous and endothermic.  相似文献   

15.
A method is reported for surface grafting of polymer containing a functional monomer for metal chelating, poly[1-(N,N-bis-carboxymethyl)amino-3-allylglycerol-co-dimethylacrylamide] (poly(AGE/IDA-co-DMAA) onto silica modified by silylation with 3-mercaptopropyltrimethoxysilane. Monomer 1-(N,N-bis-carboxymethyl)amino-3-allylglycerol (AGE/IDA) was synthesized by reaction of allyl glycidyl ether with iminodiacetic acid. The resulting sorbent has been characterized using FT-IR, elemental analysis, thermogravimetric analysis (TGA), FT-Raman and scanning electron microscopy (SEM) and evaluated for the preconcentration and determination of trace Pb(II) in human biological fluid and environmental water samples. The optimum pH value for sorption of the metal ion was 5.5. The sorption capacity of functionalized resin was 15.06 mg g−1. The chelating sorbent can be reused for 15 cycles of sorption–desorption without any significant change in sorption capacity. A recovery of 96.2% was obtained for the metal ion with 0.5 M nitric acid as eluting agent. The profile of lead uptake by the sorbent reflects good accessibility of the chelating sites in the poly(AGE/IDA-co-DMAA)-grafted silica gel. Scatchard analysis revealed that the homogeneous binding sites were formed in the polymers. The equilibrium adsorption data of Pb(II) by modified resin were analyzed by Langmuir, Freundlich, Temkin and Redlich–Peterson models. On the basis of equilibrium adsorption data the Langmuir, Freundlich and Temkin constants were determined as 0.70, 1.35 and 2.7, respectively at pH 5.5 and 20 °C. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of adsorption.  相似文献   

16.
Poly(2‐hydroxyethyl methacrylate‐ethylene dimethacrylate) (PHEMA‐EDMA) beads were produced by free radical co‐polymerization of 2‐hydroxyethyl methacrylate (HEMA) and ethylene dimethacrylate (EDMA). Then, metal complexing ligand alizarin yellow was covalently attached onto PHEMA‐EDMA beads. The resulting resin has been characterized by FT‐IR and studied for the preconcentration and determination of trace Pb(II) ion from solution samples. The optimum pH value for sorption of the metal ion was 5. The sorption capacity of functionalized resin is 100 mg.g‐1. The chelating resin can be reused for 20 cycles of sorption‐desorption without any significant change in sorption capacity. A recovery of 96% was obtained for the metal ion with 0.1 M nitric acid as eluting agent. The equilibrium adsorption data of Pb(II) on modified resin were analyzed by Langmuir and Freundlich models. Based on equilibrium adsorption data the Langmuir and Freundlich constants were determined 2.571 and 418.7 at pH 5 and 25 °C. The method was applied for lead ions determination from well water sample.  相似文献   

17.
A novel glycidyl methacrylate chelating resin has been synthesized through copolymerization of glycidyl methacrylate (GMA) in the presence of divinylbenzene (DVB), the resulting resin was immobilized with 3,4,5-trihydroxybenzoic acid (THBA) to give GMA/DVB/THBA chelating resin. The adsorption of Th(IV) and U(VI) on GMA/DVB/THBA adsorbent was studied as a function of initial concentration, pH, shaking time and temperature. The novel chelating resin shows a high capacity for Th(IV) and U(VI), maximum adsorption of Th(IV) and U(VI) were 56 and 83.6 mg/g, respectively. Kinetic studies showed that the adsorption follows the pseudo second order model referring to the influence of the textural properties of the resin on the rate of adsorption. Thermodynamic parameters such as ?H° and ?S° were studied and indicated an endothermic process.  相似文献   

18.
Poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) [poly(HEMA-GMA)] cryogel was synthesized by cryopolymerization technique at frozen temperature. Iminodiacetic acid (IDA) was then attached covalently to the cryogel as a chelating agent. Then, poly(HEMA-GMA)-IDA cryogel was chelated with Ni(II) ions and this novel metal affinity support was used for adsorption of urease from its aqueous solution. Urease adsorption experiments were carried out in a continuous system by using a peristaltic pump. Maximum urease adsorption onto poly(HEMA-GMA)-IDA-Ni(II) cryogel was found to be 11.30 mg/g cryogel at pH 5.0 acetate buffer and in 25 °C medium temperature. Urease adsorption capacity decreased with increasing ionic strength and increasing chromatographic flow rate. Adsorption kinetics of urease onto poly(HEMA-GMA)-IDA-Ni(II) cryogel was also investigated and it was found that Langmuir adsorption model is applicable for this adsorption study. This novel immobilized metal affinity chromatography support was used 10 times without any decrease at their adsorption capacity. It was also observed that urease enzyme was repeatedly adsorbed and desorbed without significant lost in enzymatic activity.  相似文献   

19.
A new aminophosphonic acid chelating resin was successfully prepared via electron beam irradiation grafting combined with chemical modification and used for the efficient removal of La(III). Firstly, glycidyl methacrylate (GMA) was grafted to polystyrene microspheres (PS) via electron beam co-radiation to obtain PS-PGMA microspheres, then followed by the amination with diethylenetriamine (DETA) to formed PS-PGMA-DETA (PGD) microspheres through nucleophilic substitution between amino and epoxy group, and finally PS-PGMA-DETA-PA (PGDP) microspheres was obtained by phosphorylation with phosphorous acid (PA). The obtained chelating resin absorbent was characterized by Fourier-transform infrared (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), which demonstrated that the millimetric aminophosphonic acid chelating resin were successfully prepared with well-defined morphology and enhanced thermal stability. The X-ray photoelectron spectroscopy (XPS) characterization results confirmed a possible adsorption mechanism, which is mainly based on the chelation and coordination of N and O in PDGP with La(III) in the solution. A series of parameters were taken into account in the adsorption experiment, such as absorbed dose, GMA concentration, dosage of PGDP, pH, contact time, temperature, and the initial concentrations of La(III). The maximum adsorption capacity obtained from the research can be achieved 288.69 mg/g at 298.15 K, pH = 6. The kinetic sorption for for La(III) fitted the type 1 pseudo-second-order (R2 = 0.9981), which revealed that the La(III) are chemisorbed on the surface of the PGDP. It was concluded that the La(III) adsorption conformed to the Freundlich equation, indicating a multilayer adsorption process. Thermodynamic data indicated that the La(III) uptake process was a spontaneous and endothermic. In addition, this research provided a new irradiation grafting method for rare earth ions removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号