首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The temperature-induced structural changes and thermodynamics of ionic microgels based on poly(acrylic acid) (PAA) networks bonded with poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) (Pluronic) copolymers have been studied by small-angle neutron scattering (SANS), ultra-small-angle neutron scattering (USANS), differential scanning calorimetry (DSC), and equilibrium swelling techniques. Aggregation within microgels based on PAA and either the hydrophobic Pluronic L92 (average composition, EO8PO52EO8; PPO content, 80%) or the hydrophilic Pluronic F127 (average composition, EO99PO67EO99; PPO content, 30%) was studied and compared to that in the solutions of the parent Pluronic. The neutron scattering results indicate the formation of micelle-like aggregates within the F127-based microgel particles, while the L92-based microgels formed fractal structures of dense nanoparticles. The microgels exhibit thermodynamically favorable volume phase transitions within certain temperature ranges due to reversible aggregation of the PPO chains, which occurs because of hydrophobic associations. The values of the apparent standard enthalpy of aggregation in the microgel suspensions indicate aggregation of hydrophobic clusters that are more hydrophobic than the un-cross-linked PPO chains in the Pluronic. Differences in the PPO content in Pluronics L92 and F127 result in a higher hydrophobicity of the resulting L92-PAA-EGDMAmicrogels and a larger presence of hydrophobic, densely cross-linked clusters that aggregate into supramolecular structures rather than micelle-like aggregates such as those formed in the F127-PAA-EGDMA microgels.  相似文献   

2.
Control of the functional group distribution is of fundamental importance in the design of functional polymer particles, particularly in biological applications. Surface-functionalized particles are useful for bioconjugation and medical diagnostics, while internally functionalized particles may have applications in drug delivery. We have prepared a series oftemperature-sensitive poly(N-isopropylacrylamide) (PNIPAM)-based microgels containing carboxylic acid functional groups via copolymerization with methacrylic acid and acrylamide, which was selectively hydrolyzed under optimized conditions to generate the carboxylic acid functionality. The resulting microgels were analyzed using conductometric and potentiometric titration, dynamic light scattering, and electrophoresis. Acrylamide-containing microgels hydrolyzed below the volume phase transition temperature (VPTT) show broad particle size versus temperature profiles, relatively low electrophoretic mobilities at basic pH, and time-dependent base titration profiles, suggesting the presence of internal functional groups whose titration is diffusion-controlled. Methacrylic acid containing microgels show sharper particle size versus temperature profiles, higher electrophoretic mobilities at basic pH, and time-independent base titration profiles, suggesting the presence of a "core-shell" structure with primarily surface functionalization. Similar results were obtained when acrylamide-containing microgels were hydrolyzed at temperatures above the VPTT. Thus, through selection of comonomer and hydrolysis conditions, we have developed strategies to control and characterize the number and distribution ofcarboxylic acid functional groups in PNIPAM-based microgels.  相似文献   

3.
Microgels are highly swollen colloids built up of flexible cross-linked chains. We studied the static and dynamic light scattering (LS) behavior of thermosensitive microgels based on N-vinylcaprolactam and N-vinylpyrrolidone prepared by precipitation copolymerization in H2O (CP-1) and D2O (CP-2). Striking differences in behavior were observed in the two solvents. In both cases the angular dependence of static LS could reasonably well be described by a soft sphere model (J. Polym. Sci., Polym. Phys. Ed. 1982, 20, 157) with small deviations at large qRg. At temperatures larger than the collapse temperatures, the CP-1 sample in water started to aggregate whereas the CP-2 sample in D2O showed no association and developed the expected change toward hard sphere behavior. Dynamic LS permitted the determination of internal or segmental mobility. A remarkable shift toward large qRg was found for CP-1 compared to the behavior of linear chains. The dynamic behavior is clearly displayed in a plot of Gamma*(q) = (Gamma1(q)/q3)(eta0/kT), with Gamma1(q) the first cumulant of the field time correlation function and the common meaning of the other parameters. A long range of hard sphere behavior indicated the suppression of internal modes, but at large qRg the swollen microgel CP-1 in water displayed internal motions with a spectrum similar to that of Zimm relaxations. No internal mobility could be detected with the CP-2 sample in D2O. The behavior is in agreement with observations in the literature. The differences in the two similar solvents were attributed to the poorer solvent quality of D2O.  相似文献   

4.
Tightly cross-linked poly(styrene-co-divinylbenzene) microgels with molecular weights in the range 107 to 108 g mole?1 were studied in solution in dimethylformamide containing 7 g dm?3 LiBr. Laser light scattering photon correlation spectroscopy (PCS) was used to measure z-average translational diffusion coefficients D?z and dilute solution viscometry to measure intrinsic viscosities [η]; values of the equivalent hydrodynamic radii 〈R η ? and 〈RD?1〉 were derived. Weight-average molecular weights M?w and z-average mean-square radii of gyration 〈S2z were determined by conventional light scattering. The microgels were investigated by gel permeation chromatography, and molecular weight data obtained using the [η]M calibration procedure were in satisfactory agreement with results obtained by electron microsocopy and conventional light scattering.  相似文献   

5.
Non-ionic N-isopropylacrylamide (PNIPAM) microgel is employed to investigate the molecular motion of polymer chains in the swollen and collapsed states. This study is performed using incoherent elastic (IES) and quasielastic neutron scattering (IQNS). IES measurements show an increase of both, the elastic intensity and the oscillations of the polymer network vibrational amplitude at the transition temperature. IQNS was measured at two different selected temperatures 290 K and 327 K corresponding to the swollen and collapsed states, respectively. The diffusion constant from IQNS experiments decreases nearly two orders of magnitude when the microgel de-swells and finally collapses.  相似文献   

6.
The volume phase transition of colloidal poly(N-isopropylacrylamide-co-acrylic acid) microgels depends in a complex way on the effective charge density within the polymer network. A series of monodisperse PNIPAM/AAc microgels with different content of acrylic acid were synthesized by surfactant-free emulsion polymerization employing sonication instead of a conventional stirring technique. Subsequently, the colloids were characterized by dynamic light scattering and electron microscopy. Potentiometric titrations provided the amount of carboxyl groups incorporated into the copolymer. The effective charge density was systematically controlled by the content of acrylic acid monomers, the pH value of the suspension, and the salt concentration. The hydrodynamic dimensions of the microgels have been measured by dynamic light scattering. The swelling/deswelling behavior is determined by the delicate balance between hydrophobic attraction of NIPAM and the repulsive electrostatic interactions of the carboxylate group of the acrylic acid moieties. Compared to their macroscopic counterparts the charged microgel particles show a significantly different swelling/deswelling behavior. This manifests in the occurrence of a two-step volume phase-transition process with increasing acrylic acid content. Hydrogen bonding has to be considered to understand this two step volume phase transition uniquely observed for colloidal microgels. Another interesting phenomenon presented here is the reversible formation of well-defined aggregates at low pH and under high salt conditions.  相似文献   

7.
In this work,gelatin-poly(acrylic acid) (GEL-PAA) nanospheres with diameter of around 35 nm were prepared using a polymermonomer (gelatin-AA) pair reaction system.These nanospheres can self-assemble into nanorods in aqueous solution at 4 °C.Based on the observation that the intermediate state of the formation of the nanorods and the facts that the self-assembly can only occur at relatively low temperature and the gelatin molecules on the outermost layer of the GEL-PAA nanospheres can be renatured to triple ...  相似文献   

8.
明胶-聚丙烯酸纳米微球可在4℃下自组装形成纳米棒,所形成的纳米棒结构规整并具有与纳米微球相同的直径.通过观察纳米棒形成的中间状态,发现该纳米棒由明胶-聚丙烯酸纳米微球一维排列而成.由于只有在较低温度下纳米微球才能形成棒状结构,并且圆二色性光谱数据证明明胶-聚丙烯酸纳米微球表面的明胶分子具有在低温下复性成为三螺旋构象的能力,因此可以推断明胶-聚丙烯酸纳米棒是由纳米微球表面的明胶分子通过复性为三螺旋结构所产生的氢键以及静电等力的作用一维自组装而形成的.  相似文献   

9.
An equilibrium mathematical model that accurately predicts microclimate pH (mupH) in thin biodegradable polymer films of poly(lactic-co-glycolic acid) (PLGA) is described. mupH kinetics was shown to be primarily a function of: (i) kinetics of water-soluble acid content and composition in the polymer matrix and (ii) polymer/water partition coefficient of water-soluble degradation products (P(i)). Polymers were coated on standard pH glass electrodes, and mupH was measured potentiometrically. Water-soluble acid distribution and content in PLGA films were determined by pre-derivatization HPLC. Polymer degradation products partitioned favorably in the polymer phase relative to water (P(i) range: approximately 6-100), and P(i) increased with increasing hydrophobicity of the acidic species according to a linear free energy law related to reversed phase HPLC retention time for the corresponding derivatized bromophenacyl esters. The mupH predicted by the model was in excellent agreement with experimental mupH for several PLGAs as a function of time and PLGA lactic/glycolic acid ratio. These data may be useful to slowly release pH-sensitive PLGA-encapsulated bioactive substances and provide a general framework for predicting partitioning behavior of degradation products in biodegradable polymers.  相似文献   

10.
11.
In this work, we present the synthesis of a novel poly(magnesium acrylate) microgel, its microstructural characterization, and its application as an enzyme immobilization system. The variation of the monomer concentration employed in the synthesis permitted to tune up the shape of the microgels in such a way that using 1.5 mol L(-1) we produced microgels of average size 40 microm formed by smaller subunits of around 1 microm. This fact confers the microgels a pomegranate-like structure that increases the specific surface of the system. Glucose oxidase (GOx) from Aspergillus niger was immobilized within the microgels with the aim of using them as bioreactors. The microgels were characterized by scanning electron microscopy and by neutron scattering. The incorporation of the enzyme results in an increment in the network mesh size and the appearance of a new correlation length in the neutron scattering pattern. Finally, the enzymatic activity of the microgels with GOx entrapped was studied as a function of the microgel cross-linking content.  相似文献   

12.
Spherical particles of 50-100 mum size composed of poly(acrylic acid) networks covalently bonded to Pluronic polyether copolymers were tested for swelling in aqueous media. The microgels were cross-linked either by permanent ethylene glycol dimethacrylate (EGDMA) cross-links alone or by EDGMA together with reversible disulfide or biodegradable azoaromatic cross-links. Optimum conditions for a rapid, diffusion-limited swelling of the pH- and temperature-sensitive microgels with nondegradable cross-links were found. The microgels cross-linked by disulfide groups and equilibrium-swollen in the buffer solution exhibited degradation-limited kinetics of swelling under physiological conditions, with a first-order reaction constant, k(1), linearly proportional to the concentration of reducing agents such as dithiotreitol and tris(2-carboxyethyl)phosphine (TCEP). A severalfold faster swelling in the presence of more powerful reducing agent, TCEP, was observed, indicating the chemical specificity of the microgel swelling. The reoxidation of the thiol groups into disulfide cross-links by sodium hypochlorite led to the restoration of the microgels' diameter measured prior to the reduction-reoxidation cycle, which confirms the shape memory of the microgels. Enzymatically degradable azoaromatic cross-links enabled slow microgel swelling due to degradation of the cross-links by azoreductases from the rat intestinal cecum. The low rate of swelling of the Pluronic-containing microgels can enable sustained drug release in colon-specific drug delivery.  相似文献   

13.
pH‐sensitive poly (vinylidene fluoride) (PVDF)/poly (acrylic acid) (PAA) microgels membranes are prepared by phase inversion of the N, N‐dimethylformamide solution containing PAA microgels and PVDF in aqueous solution. The composition and structure of the blend membrane are investigated by Fourier transform infrared spectra, X‐ray photoelectron spectroscopy measurements, thermo gravimetric analysis, field‐emission scanning electron microscope and atomic force microscope. The results indicate the surface and cross section of the blend membranes have a porous structure with PAA microgels immobilized inside the pore and on the membrane surface. The blend PVDF membranes exhibit pH‐sensitive water flux, with the most drastic change in permeability observed between pH 3.7 and 6.3. The blend membranes are fouled by bovine serum albumin, and their antifouling property is enhanced by increasing PAA microgels, mainly derived from the improved hydrophilic property. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
We present investigations of the structural properties of thermoresponsive poly(N-isopropylacrylamide) (PNiPAM) microgels dispersed in an aqueous solvent. In this particular work poly(ethyleneglycol) (PEG) units flanked with acrylate groups are employed as cross-linkers, providing an architecture designed to resist protein fouling. Dynamic light scattering (DLS), static light scattering (SLS), and small angle neutron scattering (SANS) are employed to study the microgels as a function of temperature over the range 10 °C ≤ T ≤ 40 °C. DLS and SLS measurements are simultaneously performed and, respectively, allow determination of the particle hydrodynamic radius, R(h), and radius of gyration, R(g), at each temperature. The thermal variation of these magnitudes reveals the microgel deswelling at the PNiPAM lower critical solution temperature (LCST). However, the hydrodynamic radius displays a second transition to larger radii at temperatures T ≤ 20 °C. This feature is atypical in standard PNiPAM microgels and suggests a structural reconfiguration within the polymer network at those temperatures. To better understand this behavior we perform neutron scattering measurements at different temperatures. In striking contrast to the scattering profile of soft sphere microgels, the SANS profiles for T ≤ LCST of our PNiPAM-PEG suspensions indicate that the particles exhibit structural properties characteristic of star polymer configurations. The star polymer radius of gyration and correlation length gradually decrease with increasing temperature despite maintenance of the star polymer configuration. At temperatures above the LCST, the scattered SANS intensity is typical of soft sphere systems.  相似文献   

15.
In this study, temperature-sensitive membranes were prepared by phase transition of the mixture of the temperature-sensitive poly(N-isopropylacrylamides) (PNIPAAM) microgels and poly(vinylidene fluoride). The results of Fourier transformed infrared spectrometer, X-ray photoelectron spectroscopy, elemental analysis, and scanning electron microscope photographs indicate that the PNIPAAM microgels are distributed more in the inner membrane than on the surface. The scanning electron microscope photographs reveal the blend membranes having porous surfaces with nanometer sizes and porous cross-sections with micrometer sizes. The addition of the PNIPAAM microgels is found to improve the porosity, the pore size, water flux, as well as to enhance the hydrophilicity and anti-fouling property of the blend membranes. The blend membrane shows temperature-sensitive permeability and protein rejection with the most dramatic change at around 32 °C which is the lower critical solution temperature of PNIPAAM, when water or bovine serum albumin solution flow through. Specifically, below 32 °C, the blend membrane shows a high protein rejection ratio which decreases with increasing temperature and a low water flux which increases with increasing temperature; above 32 °C, the blend membrane shows a low protein rejection ratio which decreases with increasing temperature and a high water flux which increases with increasing temperature.  相似文献   

16.
Poly(N-isopropylacrylamide) thermoresponsive microgel particles with an amine-rich corona were prepared by the copolymerization of N-isopropylacrylamide with N-vinylformamide, NVF. Hydrolysis above the volume phase transition temperature converted the surface formamide moieties to the corresponding amine. The surface amine concentration was enriched by coupling iodine-terminated polyNVF oligomers (DP=7) to the microgel amines, followed by a second hydrolysis to give the corresponding polyvinylamine. Microgel swelling and electrophoretic mobility values as functions of pH and temperature were consistent with published results for amine-containing microgels.  相似文献   

17.
Polymer-supported lipid bilayer is a key enabling technology for the design and fabrication of novel biomimetic devices. To date, the physical driving force underlying the formation of polymer-supported lipid bilayer remains to be determined. In this study, the interaction between dipalmitoylphosphocholine (DPPC) vesicle and poly(ethylene terephthalate) [PET] surface with or without grafted poly(acrylic acid) [PAA] layer is examined with several biophysical techniques. First, vesicle deformation analysis shows that the geometry of adherent vesicle on either plain PET or PAA-grafted PET surface is best described by a truncated sphere model. At neutral pH, the degree of deformation and adhesion energy are unaltered by the grafted polymerization of acrylic acid on PET surface. Interestingly, the average magnitude of adhesion energy is increased by 185% and −43% on PAA-grated PET and plain PET surface, respectively, towards an increase of pH at room temperature. Our results demonstrate the possibility of tuning the adhesive interaction between vesicle and polymer cushion through the control of polyelectrolyte ionization on the solid support.  相似文献   

18.
The pH-induced swelling and collapse of surface-tethered, weak polyelectrolyte brushes is of interest for the development of actuators or to allow pH controlled transport or adsorption. This contribution discusses results of an extensive series of quartz crystal microbalance (QCM) experiments that aimed at (i) further understanding the influence of brush thickness and density on the pH responsiveness of poly(methacrylic acid) (PMAA) brushes and (ii) developing strategies that allow one to engineer the pH responsiveness and dynamic response range of PMAA based brushes. It was observed that, due to their high grafting density, the apparent pK(a) of surface-tethered PMAA differs from that of the corresponding free polymer in solution and also covers a broader pH range. The pK(a) of the PMAA brushes was found to depend on both brush thickness and density; thicker brushes showed a higher pK(a) value, and brushes of higher density started to swell at higher pH. The second part of the paper demonstrates the feasibility of the N-hydroxysuccinimide-mediated post-polymerization modification to engineer the pH responsiveness of the PMAA brushes. By using appropriate amine functionalized acids, it was possible to tune both the pH of maximum response as well as the dynamic response range of these PMAA based polyelectrolyte brushes.  相似文献   

19.
Poly(N-isopropylacrylamide-co-acrylic acid) microgels (PNA) may be an excellent formulation for in situ gelling system due to their high sensitivity and fast response rate. Four monodispersed PNA microgels with various contents of acrylic acid (AA) were synthesized by emulsion polymerization in this paper. Their hydrodynamic diameters decreased reversibly with both decreasing pH and increasing temperature. The dual temperature/pH-sensitivity was influenced by many factors such as AA content, cross-link density and ion strength. In addition, high concentration PNA dispersions underwent multiple phase transition according to different temperatures, pHs and concentrations, which were summarized in a 3D sol-gel phase diagram in this study. According to the sol-gel phase transition, 8% PNA-025 dispersion maintained a relatively low viscosity and favorable fluidity at pH 5.0 in the temperature range of 25-40°C, but it rapidly increased in viscosity at pH 7.4 and gelled at 37°C. This feature enabled the dual temperature/pH-sensitive microgels to overcome the troubles in syringing of temperature sensitive materials during the injection. Apart from this, PNA could form gel well in in vitro (e.g., medium and serum) and in in vivo with low cytotoxicity. Therefore, it is promising for PNA to be applied in the in situ gelling system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号