首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(lactic acid) (PLA) depolymerases are categorized into protease-type and lipase-type. Protease-types can hydrolyze poly(l-lactic acid) (PLLA) but not poly(d-lactic acid) (PDLA). Lipase-types, including cutinase-like enzyme (CLE) from Cryptococcus sp. strain S-2 preferentially hydrolyze PDLA. Both enzymes degraded not only PLA emulsion but also PLA film, in which amorphous region is preferentially attacked, but crystalline region can be also attacked. Stereocomplex PLA (sc-PLA) formed by 50:50 blending of PLLA and PDLA included no homo crystals, but a tiny homo crystallization peak appeared and crystallinity increased by 5% when attacked by CLE, although no significant change of molecular weight and crystalline size was found. Enantioselective degradation must occur in amorphous region of PLLA/PDLA film and preferentially hydrolyzed PDLA, resulting in a slightly excess amount of PLLA remained, which must be crystallized.  相似文献   

2.
The objective of this work is to study the gas/vapor sorption in poly(lactic acid) (PLA) with a 98:2 (l:d) ratio using a quartz crystal microbalance (QCM). For that purpose, the sorption of carbon dioxide, ethylene and water vapor in poly(lactic acid) (PLA) with a 98:2 (l:d) ratio, in temperature range from 283 to 313 K and up to atmospheric pressure was measured. The measured isotherms indicate that the sorption mechanism is sorbate dependent, since carbon dioxide and ethylene seem to have predominantly a Langmuir type of mechanism while water is predominantly Henry controlled. Two temperature protocols were used and only ethylene sorption is affected by them. Comparisons with previously measured gas sorption data in PLA 80:20 using the same temperature protocol indicate that the l:d ratio plays a dominant role in gas/vapor sorption in PLA.  相似文献   

3.
Morphological behaviour of poly(lactic acid) during hydrolytic degradation   总被引:1,自引:0,他引:1  
The hydrolytic degradation and the morphological behaviour of a packaging grade of poly(lactic acid) (PLA) were characterized by a series of techniques. During the initial degradation process (stage 1) at a temperature near the glass transition temperature (Tg), the molecular weight of PLA decreased as degradation time increased following a bulk erosion mechanism while the crystallinity increased simultaneously, but no observable weight loss occurred at stage 1. Mainly α-form PLA crystal structure was formed for the crystalline PLA with a low content of d stereo-isomers, but the material displayed a lower regularity, smaller domain size, lower melting temperatures Tm and different motional dynamics as compared to the original PLA with a similar level of crystallinity achieved by annealing. The amorphous PLA with a higher amount of d stereo-isomers also yielded the α crystalline phase as well as stereo-complex crystals at stage 1. When the molecular weight and the crystallinity reached a stable level, PLA started erosion into the degrading aqueous medium. During this stage of degradation (stage 2), the crystalline structure in PLA residues was further modified and both pH and temperature influenced the modification. The degradation at stage 2 was likely to follow a surface erosion mechanism with lactic acid as the major product of the weight loss. Besides the crystallinity effect on the degradation, temperature also played a key role in determining the rate of PLA degradation in both stages. The process was very slow at temperatures below the Tg of PLA but the rate was greatly enhanced at temperatures above the Tg.  相似文献   

4.
In this study, the biodegradable poly(lactic acid) (PLA)/montmorillonite (MMT) nanocomposites were successfully prepared by the solution mixing process of PLA polymer with organically-modified montmorillonite (m-MMT), which was first treated by n-hexadecyl trimethyl-ammonium bromide (CTAB) cations and then modified by biocompatible/biodegradable chitosan to improve the chemical similarity between the PLA and m-MMT. Both X-ray diffraction data and transmission electron microscopy images of PLA/m-MMT nanocomposites indicate that most of the swellable silicate layers were disorderedly intercalated into the PLA matrix. Mechanical properties and thermal stability of the PLA/m-MMT nanocomposites performed by dynamic mechanical analysis and thermogravimetric analysis have significant improvements in the storage modulus and 50% loss in temperature when compared to that of neat PLA matrix. The degradation rates of PLA/m-MMT nanocomposites are also discussed in this study.  相似文献   

5.
To improve the toughness of PLA, poly(lactic acid) (PLA)/organically modified rectorite (OREC) nanocomposites were prepared via the melt-extrusion method. A partially exfoliated and partially intercalated structure was confirmed by WAXD and TEM. The crystallization behaviors of neat PLA and nanocomposite were studied by POM and DSC, and it was found that OREC had a great effect on the overall crystallization rate and spherulitic texture of PLA. The presence of OREC could toughen PLA greatly. For example, when 1 wt.% OREC was added, the elongation at break of the nanocomposite was increased to 210%. The toughening mechanism was analyzed through the observation of the inner structure of the tensile test bar using SEM.  相似文献   

6.
Gas permeation properties of poly(lactic acid)   总被引:2,自引:0,他引:2  
The need for the development of polymeric materials based on renewable resources has led to the development of poly(lactic acid) (PLA) which is being produced from a feedstock of corn rather than petroleum. The present study examines the permeation of nitrogen, oxygen, carbon dioxide, and methane in amorphous films of PLA cast from solution. The properties of PLA are compared to other commodity plastics and it is shown that PLA permeation closely resembles that of polystyrene. At 30°C, N2 permeation in PLA is 1.3 (10−10 cm3 (STP) cm/cm2 s cmHg) and the activation energy is 11.2 kJ/mol. For oxygen the corresponding values are 3.3 (10−10 cm3(STP) cm/cm2 s cm Hg) and 11.1 kJ/mol. The values for carbon dioxide permeation are 1.2 (10−10 cm3 (STP) cm/cm2 s cmHg) and 6.1 kJ/mol. For methane values of 1.0 (10−10 cm3 (STP) cm/cm2 s cmHg) and an activation energy of 13.0 kJ/mol are found. Studies with pure gases show that polymer chain branching and small changes in l:d stereochemical content have no effect on permeation properties. Crystallinity is found to dominate permeation properties in a biaxially oriented film. The separation factor for a CO2/CH4 mixed gas system is measured between 0 and 50°C and does not deviate significantly from the calculated ideal separation factor; at 0°C the separation factor is 16, a value that suggests continued studies of PLA as a separation medium are warranted.  相似文献   

7.
Poly(lactic acid), PLA, was chemically modified with maleic anhydride (MA) by reactive extrusion. The effect of this modification on molar mass (MM) and acidity was assessed by means of size-exclusion chromatography (SEC) and titration, respectively. PLA MM decreased in the presence of MA solely and of MA and peroxide. Reduction in MM was monitored by the increase in acidity. PLA blends containing poly(butylene adipate-co-terephthalate) (PBAT) were prepared through different mixing protocols, PLA/PBAT, PLA-g-MA/PBAT and PLA/PBAT/MA/peroxide (PLA/PBAT in situ). SEC results and rheological properties revealed reduction in MM and viscosity of the modified blends. PLA/PBAT presented increase in MM and bimodal MM distribution. The calculated interfacial tension was significantly lower for the modified blends, despite the lower average particle area of PLA/PBAT. Surprisingly, the modified blends presented higher yield strength than that predicted by the rule of mixtures, which might indicate interfacial reactions.  相似文献   

8.
The sorption behavior of small molecules like ethane and ethylene in poly (lactic acid) (PLA) was studied in the temperature interval from 283 to 313 K using a Quartz Crystal Microbalance (QCM). The effect of the polymer structure on the solubility selectivity of PLA films with respect to these two gases was studied using polymer with two different L:D ratios (98:2 and 80:20). Furthermore, the polymer films were submitted to different thermal treatments to address the influence of crystallinity and morphology of the noncrystalline fraction on the sorption behavior. The sorption results obtained indicate that ethylene solubility coefficient in annealed PLA 98:2 is about 26% higher than that of ethane and 41% higher in PLA 98:2 melted. The dual‐mode sorption model describes well the sorption isotherms behavior, which is concave concerning the pressure axis. The fully amorphous PLA presents the better selectivity for the studied gases, since the crystallinity seems to produce a negative effect on the selectivity. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1312–1319, 2008  相似文献   

9.
Biodegradation of poly(lactic acid) and its nanocomposites   总被引:2,自引:0,他引:2  
PLA nanocomposites based on organically modified montmorillonites at 5% w/w loading were prepared by melt blending using an internal mixer and then degraded in a commercial compost. The addition of nanoclays was found to increase the PLA degradation rate, especially for the highest dispersed clay in the polymer matrix. Biodegradation by microorganisms isolated from the compost showed the bacterium Bacillus licheniformis as one of the responsible for PLA biodegradation in compost. It was also found that clays can influence the polymer bacterial degradation depending on their chemical structure and affinity of the bacterium towards the clay.  相似文献   

10.
The step-growth polymerization of L-lactic acid in solution was studied in this work. In order to attain a polymer with high molecular weight, the water formed during the polymerization must be continuously removed. The use of organic solvents with high boiling point, drying agents and reduced pressure led to poly(lactic acid) (PLA) with high molecular weight, directly from the monomer. Tin (II) chloride dihydrate, SnCl2.2H2O, was the best of the catalysts tested as it allowed achieving PLA with a molecular weight close to 80 000 g.mol−1. However, the stereoregurarity control is a severe problem in PLA synthesis by step-growth due to transesterification reactions, which lead to an inversion of the conformation and a decrease of the optical purity of the polymer. Specific rotation measurements were used in this work and showed to be a powerful technique to evaluate the racemization extent. The thermal stability of the PLA samples was evaluated by DSC which exhibits a thermal behaviour similar to the commercial Polylactide.  相似文献   

11.
This work study is the compatibility, phase structure, and component interaction of poly(lactic acid) (PLA) and glycidyl methacrylate grafted poly(ethylene octane) (GMA-g-POE denoted as mPOE) blend by Fourier transform infrared (FTIR) spectra, dynamic mechanical analysis (DMA), scanning electron microscopy (SEM), and wide-angle X-ray diffraction (WAXD), respectively. All the binary blend compositions exhibit two distinct glass transition temperatures corresponding to the mPOE-rich and PLA-rich phases, respectively. Moreover, these two peaks approach each other with increasing mPOE content, indicating partial compatibility between the PLA and mPOE. Chemical reactions between the end carboxyl groups of the PLA and epoxy groups of the mPOE are considered as the driving force of the enhanced compatibility. They lead to an increase in viscosity of the blends and a decrease in the structural symmetry of PLA. This result brings about a decrease in the spherulite growth rate and the degree of crystallinity. Glass transition temperature (Tg) depression of mPOE is attributed to the negative pressure imposed on the dispersed rubber phase, resulting from differential contraction due to the thermal shrinkage mismatch upon cooling from the melt state. The negative pressure in the dispersed particles, in turn, would cause a dilational effect for the matrix ligament between the particles, and therefore increases the ductility and toughness of PLA.  相似文献   

12.
通过两步法将2,3-环氧丙基三甲基氯化铵接枝壳聚糖合成了水溶性壳聚糖季铵盐(HTCC),以其为插层剂对稀有的新疆皂石(Saponite)黏土矿物进行有机改性,制备了壳聚糖季铵盐皂石(HTCC-saponite),并以其为助剂,以丙交酯为单体,通过原位插层聚合法制备了聚乳酸(PLA)/HTCC-saponite纳米复合材料.最优化合成条件:聚合反应温度150℃,辛酸亚锡加量2%(质量分数),HTCC-saponite加量1%(质量分数)、聚合反应时间16 h.微观结构分析表明HTCC-saponite具有插层与剥离共存的结构.采用X射线衍射(XRD)、透射电子显微镜(TEM)、热重分析(TG-DTG)和差示扫描量热仪(DSC)等对PLA/HTCC-saponite纳米复合材料的微观结构、形貌及热稳定性进行了表征和分析.结果表明,HTCC-saponite有效改善了PLA的结晶性能,提高PLA的热稳定性.抗菌测试结果表明,HTCC-saponite具有良好的抗菌性,并赋予PLA/HTCC-saponite复合材料较强的抑菌能力.  相似文献   

13.
Preparation of PLA based nanocomposites was carried out by using two different nanofillers: expanded graphite and organically modified montmorillonite. The addition and co-addition of these nanofillers to PLA using the melt-blending technique provides nanocomposites that showed significant enhancements in rigidity, thermal stability and fire retardancy of the polymer matrix. The presence of dispersed graphite nanolayers in PLA significantly accelerated the polyester crystallization, whereas the essential increase of thermal resistance is mainly connected to the addition of organoclay. The structure of the nanocomposites was examined by Wide Angle X-ray Scattering Analysis and Transmission Electron Microscopy. The improvement of thermal and mechanical properties obtained by the presence of both nanoparticles in PLA were associated to the good (co)dispersion and to the co-reinforcement effect, whilst the fire retardant properties were found to be related to the combined additive action of both nanofillers.  相似文献   

14.
立构复合型聚乳酸(SC-PLA)由于聚左旋乳酸(PLLA)与聚右旋乳酸(PDLA)分子链之间强烈的相互作用,可以使熔点提高约50℃,改善了聚乳酸在耐热性上的不足,同时这种立构复合结构使聚乳酸的力学性能、结晶性能、耐水解性等也得到提升.立构复合型聚乳酸的合成新进展主要集中在嵌段型SC-PLA的制备,同时广泛采用X射线衍射...  相似文献   

15.
Poly(lactic) acid (PLA) is a compostable biopolymer and has been commercialised for the for the manufacture of short-shelf life products. As a result, increasing amounts of PLA are entering waste management systems and the environment; however, the degradation mechanism is unclear. While hydrolysis of the polymer occurs abiotically at elevated temperature in the presence of water, potential catalytic role for microbes in this process is yet to be established. In this study, we examined the degradation of PLA coupons from commercial packaging at a range of temperatures (25°, 37°, 45°, 50° and 55 °C) in soil and compost and compared with the degradation rates in sterile aqueous conditions by measuring loss of tensile strength and molecular weight (Mw). In addition, in order to assess the possible influence of abiotic soluble factors in compost and soil on degradation of PLA, degradation rates in microorganism-rich compost and soil were compared with sterile compost and soil extract at 50 °C. Temperature was determined to be the key parameter in PLA degradation and degradation rates in microorganism-rich compost and soil were faster than in sterile water at temperatures 45° and 50 °C determined by tensile strength and Mw loss. Furthermore, all tensile strength was lost faster after 30 and 36 days in microorganism-rich compost and soil, respectively, than in sterile compost and soil extract, 57 and 54 days, respectively at 50 °C. Significantly more Mw, 68% and 64%, was lost in compost and soil, respectively than in compost extract, Mw, 53%; and in soil extract, 57%. Therefore, degradation rates were faster in microorganism-rich compost and soil than in sterile compost and soil extract, which contained the abiotic soluble factors of compost and soil at 50 °C. These comparative studies support a direct role for microorganisms in PLA degradation at elevated temperatures in humid environments. No change in tensile strength or Mw was observed either 25° or 37 °C after 1 year suggesting that accumulation of PLA in the environment may cause future pollution issues.  相似文献   

16.
Uniaxial deformation of amorphous poly(lactic acid) (PLA) film was performed at 60 °C (around the glass transition temperature). The deformed samples revealed a strain-induced mesophase, and its fraction and thermal stability increased with draw strain. Further annealing was performed in situ at constant length, at the drawing temperature for the films drawn to strains of 100% and 230%. Interestingly, the orientation of amorphous phase relaxed more rapidly for the 100% sample compared with the 230% one. This could be ascribed to the constraint effect of mesophase on the amorphous chains. In addition, the chains of mesophase relaxed slightly for the 100% sample while it retained high orientation for the 230% sample. Meanwhile, the mesophase fraction decreased, and the trend was more significant for the sample drawn to 100%. These effects can be ascribed to the melting of mesophase and the different thermal stabilities of the mesophases.  相似文献   

17.
Poly(lactic acid) (PLA) was depolymerized by methanol in the presence of a novel catalyst: ionic liquids. It was found that the purification method of the main products in the methanolysis catalyzed by ionic liquids was simpler than that of traditional compounds, such as sulfuric acid. Qualitative analysis indicated that the main product in the methanolysis process was methyl lactate. The influences of experimental parameters, such as the amount of ionic liquids, methanolysis time, reaction temperature, and dosages of methanol on the conversion of PLA, yield of methyl lactate were investigated. Under the optimum conditions, using ionic liquid 1-butyl-3-methylimidazolium acetate ([Bmim][Ac]) as catalyst, results showed that the ionic liquid could be reused up to 6 times without apparent decrease in the conversion of PLA and yield of methyl lactate. The kinetics of the reaction was also investigated. The results indicated that the methanolysis of PLA was a first-order kinetic reaction with activation energy of 38.29 kJ/mol. In addition, a possible catalysis mechanism of the methanolysis of PLA was proposed.  相似文献   

18.
The blending of PLA with poly(butylene-adipate-co-terephthalate) (PBAT) is a promising strategy to achieve a toughened multiphase material. The blends ductility could be further improved through reactive compatibilization, i.e. inducing the formation of comb PLA-PBAT copolymers during the melt blending. In the present work a non-selective strategy was adopted which consisted in the use of a peroxide, 2,5-Dimethyl-2,5-di(tert-butylperoxy)hexane. The phase morphology development and the final properties (torque, fluidity in the melt, tensile behaviour, thermal and dynamical-mechanical features) of the blends were studied as a function of the peroxide concentration. The elongation at break was improved up to a maximum value thanks to this approach and a corresponding minimum was observed in the value of the dispersed phase diameter. A structural characterization of the macromolecules formed during the reactive process was attempted by using size exclusion chromatography of the blends and comparison with the pure polymers obtained by processing in the presence of the peroxide.  相似文献   

19.
选用辛酸亚锡[Sn(Oct)2]和钛酸四丁酯(TBT)作为聚乳酸(PLA)/聚碳酸亚丙酯(PPC)的酯交换反应催化剂, 研究了溶液条件下单一催化剂及复合催化剂对PLA/PPC酯交换反应的催化作用. 通过对反应产物的分子结构、 热力学及流变学行为进行分析, 结果发现, 无论在单一催化剂还是复合催化剂作用下, PLA与PPC分子间均发生了酯交换反应, 同时伴随着断链反应. 其中, 当Sn(Oct)2作为单一催化剂或Sn(Oct)2/TBT作为复合催化剂时, 样品更倾向发生断链反应而非显著的酯交换反应. 进一步分析纯样品在催化剂Sn(Oct)2或TBT作用下的反应情况, 结果发现, PPC在反应最初阶段以高分子量的分子链断链为主, 且会发生明显的解拉链降解, 从而导致PLA/PPC在等质量比时酯交换反应程度不高, 这为今后更好地研究PLA/PPC酯交换反应提供了思路.  相似文献   

20.
Oriented thermoplastic polyurethane (TPU) fiber and fiber network were first prepared by electrospinning. The as-prepared TPU fiber or fiber network was then pre-fixed in poly(lactic acid) (PLA)/TPU composite to improve the toughness of PLA. For comparison purpose, TPU/PLA composites with sea-island morphology were also prepared by traditional solution blending and mechanical blending. The results show that the toughness of PLA is greatly increased by the special pre-fixed oriented TPU fibers even at a low content, and the toughness is further increased by the TPU fiber network. Our results indicate for the first time that the toughening effect of special TPU fibers or fiber network is much better than that of traditional TPU with sea-island morphology. This study provides guidance to largely improve the toughness of PLA by designing the special phase morphology of TPU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号