首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of O/W nano-emulsions by the PIT emulsification method in water/mixed nonionic surfactant/oil systems has been studied. The hydrophilic-lipophilic properties of the surfactant were varied by mixing polyoxyethylene 4-lauryl ether (C12E4) and polyoxyethylene 6-lauryl ether (C12E6). Emulsification was performed in samples with constant oil concentration (20 wt%) by fast cooling from the corresponding HLB temperature to 25 degrees C. Nano-emulsions with droplet radius 60-70 nm and 25-30 nm were obtained at total surfactant concentrations of 4 and 8 wt%, respectively. Moreover, droplet size remained practically unchanged, independent of the surfactant mixing ratio, X(C12E6). At 4 wt% surfactant concentration, the polydispersity and instability of nano-emulsions increased with the increase in X(C12E6). However, at 8 wt% surfactant concentration, nano-emulsions with low polydispersity and high stability were obtained in a wide range of surfactant mixing ratios. Phase behavior studies showed that at 4 wt% surfactant concentration, three-liquid phases (W+D+O) coexist at the starting emulsification temperature. Furthermore, the excess oil phase with respect to the microemulsion D-phase increases with the increase in X(C12E6), which could explain the increase in instability. At 8 wt% surfactant concentration, a microemulsion D-phase is present when emulsification starts. The low droplet size and polydispersity and higher stability of these nano-emulsions have been attributed, in addition to the increase in the surface or interfacial activity, to the spontaneous emulsification produced in the microemulsion D-phase.  相似文献   

2.
Properties of water-in-oil (W/O) nano-emulsion formed by a low-energy emulsification method are described in this work. Nano-emulsions have been formed in water/mixed non-ionic surfactant/decane. Several mixtures of Span 20, Span 80, Tween 20 and Tween 80 were studied. Phase behavior studies and stability studies allowed to determine zones where nano-emulsions can be formed. Bluish and transparent W/O nano-emulsion with droplet sizes as low as 30 nm was formed. Nano-emulsion droplet size was measured by Dynamic Light Scattering. Nano-emulsions stability was studied by multiple light scattering and by dynamic light scattering. The results showed the evolution with time of the average radius droplet. The nano-emulsions prepared showed high kinetic stability for weeks, without phase separation, sedimentation or creaming. Nevertheless, their droplet size increased slightly over time. Stability studies show that nano-emulsion breakdown could be attributed to Ostwald ripening and coalescence mechanism, depending on the water concentration.  相似文献   

3.
The interactions between surfactant and water were studied thermoanalytically focusing on the lyotropic liquid crystalline and microemulsion region in four ternary systems containing Cremophor EL and Cremophor RH40 as surfactants, neutral oil and isopropyl myristate as oily components. Subzero temperature DSC (SZT-DSC) measurements were carried out to determine the quantity of the bound water forming a hydration layer in surfactant microstructures, and the amount of free water, which has physico-chemical properties not much different from those of pure water. The variation of the surfactant:bound water ratio in the function of water concentration was also investigated. Phase changes detected by the SZT-DSC measurements were confirmed by polarization-microscopic and rheological investigations.  相似文献   

4.
Formation of nano-emulsions has been studied in the system water/nonylphenol polyoxyethylene ether (S1)/triazophos or water/nonylphenol polyoxyethylene ether/N-octyl-2-pyrrolidone (S2)/triazophos at 25 °C by low-energy emulsification methods: stepwise addition of water to a solution of the surfactant in oil. Nano-emulsions’ high kinetic stability has been obtained at oil weight fractions lower than 0.25 or 0.20 for the two systems respectively. Phase behavior studies have revealed that compositions giving rise to nano-emulsions consist of Om (isotropic liquid phase), Wm (O/W micro-emulsion), La (lamellar liquid crystalline), and O (oil) phases, at equilibrium. Droplet sizes of the nano-emulsions were measured by dynamic light scattering (DLS), and mean sizes are within the typical droplet radius of nano-emulsion except for low-dilution-fold; the higher the water concentration, the higher the size. The hydrolysis of triazophos was studied in buffered solutions with pH 5, 7 and 9, the results showed that triazophos is relatively stable in acidic and neutral solutions and easily hydrolyzed in basic solutions. Furthermore, the research indicated triazophos can be protected from hydrolysis by incorporating into nano-emulsion system. The effect of surfactant on the hydrolysis inhibition of triazophos in the basic condition is more prominent than that in acidic condition.  相似文献   

5.
Water-in-oil-in-water (W/O/W) double emulsion can be prepared by incomplete phase inversion method using both medium chain triglycerides (MCT) and isopropyl myristate (IPM) as oil phase, Span 85-Tween 80 (HLB values of 2.5-3.0) as mixed emulsifiers. The preparation method was simple, and the final double emulsions were proved of good microstructure and particle size distribution. Owning to the addition of Tween 80 to Span 85, interfacial tension, interfacial viscosity and modulus decreased, which contributed to the phase inversion. Furthermore, formation of reverse micelles under high-speed dispersion may be a hypothesis to explain the incomplete phase inversion phenomenon.  相似文献   

6.
The phase inversion temperature (PIT) method is generally used to prepare nonionic surfactant stabilized nano-emulsions because of its low energy and surfactant consumption. The emulsion droplets are usually negatively charged because of the selective adsorption of OH(-) onto the droplet surfaces. In this work, positively charged oil/water nano-emulsions were prepared by adding a cationic surfactant to the system. The cationic molecules change the spontaneous curvature of the surfactant layers and raise the PIT above 100 °C. The PIT can be depressed by addition of NaBr, as shown by conductivity measurements and equilibrium phase behavior. Therefore, these nano-emulsions can be prepared by the PIT method. We found that the formation of the nano-emulsions did not require a cross-PIT cycle. The mechanism of the emulsification is the formation of mixed swollen micelles that can solubilize all the oil above a "clearing boundary", followed by a stir-quench to a temperature where these droplets become metastable emulsions. The zeta potential of the emulsion droplets can be easily tuned by varying the cationic surfactant concentrations. Due to electrosteric stabilization, the resulting nano-emulsions are highly stable, thus could find significant applications in areas such as pharmaceuticals, cosmetics and food industries.  相似文献   

7.
以卵磷脂为表面活性剂,正丙醇为助表面活性剂,肉豆蔻酸异丙酯(IPM)为油相,配制成W/O型微乳。并通过浊点法、电导法、动态光散射法(DLS)以及差示扫描量热法(DSC)研究了微乳相结构随含水量的变化。对于选定配比微乳,浊点法在含水量超过10.71%时变浑浊;电导率在含水量达到3.85%之前增长缓慢,之后快速增大,含水量超过10.71%时电导率下降;DLS显示微乳粒径随含水量先减小后增大,其转折点在5.66%,而含水量超过10.71%后粒径突增3个数量级;DSC曲线在含水量超过3.85%后出现水的结晶峰,且随含水量的增大峰位往高温方向平移,同时峰面积增大。当含水量达到11.5%时出现两水峰叠加。研究表明含水量在3.85%~5.66%范围内属于W/O向双连续相转变的过程,而含水量10.71%则是体系发生相分离的临界点。  相似文献   

8.
IntroductionMicroemulsion is defined as a dispersed systemconsisting of oil, surfactant, cosurfactant, and anaqueous phase. It is a thermodynamically stable opti-cally transparent isotropic liquid solution with a dropletdiameter usually less than 100 nm[1…  相似文献   

9.
A new O/W (oil-in-water) emulsification system was developed using the amphiphilic polymer HHM-HEC (hydrophobically-hydrophilically modified hydroxyethylcellulose) and a lipophilic surfactant. HHM-HEC was used as a thickener and polymeric surfactant, and the addition of small quantities of various types of nonionic lipophilic surfactant (hydrophilic-lipophilic balance <5) decreased the droplet size of several types of oil due to a lowering of the tension at the water/oil interface. The oil droplets were held by the strong network structure of the aqueous HHM-HEC solution, preserving the O/W phase without inversion. These stable O/W emulsions were prepared without the addition of hydrophilic surfactants and thus show improved water repellency.  相似文献   

10.
The low-energy emulsification method Emulsion Inversion Point (EIP) was used to prepare O/W nano-emulsions in the W/potassium oleate-oleic acid-C(12)E(10)/hexadecane ionic system. This method had not practically been used in ionic systems up to now. The resulting droplet sizes, much smaller than those obtained with the high-energy emulsification methods, depend on the composition (formulation variables) and preparation variables (addition and mixing rate). Phase diagrams, rheology measurements, and experimental designs applied to nano-emulsion droplet sizes obtained were combined to study the formation of these nano-emulsions. To obtain small droplet sizes, it is necessary to cross a direct cubic liquid crystal phase along the emulsification path, and it is also crucial to remain in this phase long enough to incorporate all of the oil into the liquid crystal. When nano-emulsion forms, the oil is already intimately mixed with all of the components, and it only has to be redistributed. Results show that the smaller droplet sizes are obtained when the liquid crystal zone is wide and extends to high water content, because in this case, during the emulsification process, the system remains long enough in the liquid crystal phase to allow the incorporation of all of the oil. Around the optimal formulation variables, the liquid crystal zone crossed during emulsification is wide enough to incorporate all of the oil whatever mixing or stirring rate is used, and then the resulting droplet size is independent of preparation variables. However, when the composition is far from this optimum, the liquid crystal zone becomes narrower and the mixing of components controls the nano-emulsion formation. High agitation rates and/or low addition rates are required to ensure the dissolution of all of the oil into this phase.  相似文献   

11.
Mixtures of polyols (glycerol, propylene glycol, glucose) and water were emulsified in oil (isopropyl myristate (IPM), medium chain triglycerides (MCT), long chain triglycerides (LCT), and d-limonene) under elevated pressures and homogenization, in the presence of polyglycerol polyricinoleate (PGPR), glycerol monooleate (GMO), and their mixture as emulsifiers to form water-in-oil emulsions. High pressures was applied to: a) the emulsion, b) the aqueous phase and c) the oil phase in the presence of the emulsifiers (PGPR and GMO). Under optimal pressure (2000 atms) applied to the ready-made emulsion or to the aqueous phase prior to its emulsification, and with optimal composition (30wt% polyol in the aqueous phase and MCT as the oil phase), the aqueous droplets were stable for months and submicron in size (0.1 μm). Moreover, due to equalization of the oil and the aqueous phases refractive indices, the emulsions were almost transparent. Pressure and polyols have synergistic effects on the emulsions stability. During preparation, surface tensions and interfacial tensions were dramatically reduced until an optimal water/polyols ratio was achieved, which allows rupturing of the droplets to submicronal size (0.1 μm) without recoalescence and fast diffusion to the interface. These unique W/O emulsions are suitable for preparing W/O/W double emulsions for sustained release of active materials for food applications.  相似文献   

12.
Formation of oil-in-water nano-emulsions has been studied in the water/C12E4/isohexadecane system by the phase inversion temperature emulsification method. Emulsification started at the corresponding hydrophilic-lipophilic balance temperature, and then the samples were quickly cooled to 25 degrees C. The influence of phase behavior on nano-emulsion droplet size and stability has been studied. Droplet size was determined by dynamic light scattering, and nano-emulsion stability was assessed, measuring the variation of droplet size as a function of time. The results obtained showed that the smallest droplet sizes were produced in samples where the emulsification started in a bicontinuous microemulsion (D) phase region or in a two-phase region consisting of a microemulsion (D) and a liquid crystalline phase (L(alpha)). Although the breakdown process of nano-emulsions could be attributed to the oil transference from the smaller to the bigger droplets, the increase in instability found with the increase in surfactant concentration may be related to the higher surfactant excess, favoring the oil micellar transport between the emulsion droplets.  相似文献   

13.
Formation of polymeric O/W nano-emulsions has been studied in the water/polyoxyethylene 4 sorbitan monolaurate/ethylcellulose solution system by the phase inversion composition (PIC) method. These nano-emulsions were used for the preparation of nanoparticles by solvent evaporation. Composition variables such as O/S ratio or final water content as well as emulsification path have been found to play a key role in the formation of stable, nanometer sized emulsions. Nano-emulsions with a constant water content of 90 wt.% and O/S ratios from 50/50 to 70/30 showed an average droplet size of about 200 nm as assessed by dynamic light scattering. Mean nanoparticle diameters, as determined by transmission electron microscopy image analysis, were of the order of 50 nm and showed a slight increase as well as a broader size distribution at increasing O/S ratios. The findings verify that the low-energy emulsification methods are not only valid for aliphatic and semipolar oils, but also for a highly polar solvent such as ethylacetate containing a preformed polymer.  相似文献   

14.
The purpose of this study was to evaluate the viability and permeability of carbamazepine (CBZ) solubilized in fully dilutable non-ionic microemulsions across Caco-2 cells used as a model for intestinal epithelium. Maximum solubilization capacity (SC) of CBZ was determined within water-in-oil (W/O), bicontinuous and oil-in-water (O/W) structures formed upon dilution. The effect of the nature of the oil phase, surfactant type, and the ratio between the oil phase and surfactant on the quantity of solubilized CBZ, droplets size, the viability of the cells and drug permeability was elucidated. We found that: (1) several fully dilutable microemulsions based on pharma-grade ingredients can be loaded with very significant amounts of CBZ, (2) W/O microemulsions (10wt% water) exhibit up to 3-fold higher solubilization capacity over the drug's solubility in oil (triacetin), (3) CBZ in the O/W microemulsions (80wt% water) exhibit up to 29-fold higher solubilization than in water, (4) the O/W droplets of the examined systems are 9-11nm in size, (5) the highest permeability was obtained in systems containing triacetin/alpha-tocopherol acetate/ethanol in 3/1/4wt% ratio as oil phase and Tween 60 as surfactant, (6) the replacement of alpha-tocopherol acetate by alpha-tocopherol inhibits CBZ release, (7) replacement of a saturated chain of Tween 60 by an unsaturated (Tween 80) or shorter chain (Tween 40) inhibited drug release, (8) the decrease in the oil phase to surfactant ratio leads to enhancement of drug release (dilution line 64>dilution line 73).  相似文献   

15.
Active pharmaceutical ingredients with poor solubility in water and some organic solvents are a challenge in the pharmaceutical industry. To overcome this limitation, microemulsion systems are a choice to increase the solubility of a sparingly soluble active ingredient. The purpose of this study is to introduce and compare two types of oil-in-water (O/W) and ionic liquid-in-water (IL/W) microemulsions, which were formulated to increase the solubility of celecoxib as an active pharmaceutical ingredient. The proposed formulations are composed of the same nonionic surfactant/co-surfactant of Tween-80/transcutol®P, and different oil phases of isopropyl myristate, [BMIM][PF6] and [OMIM][PF6]. The pseudo-ternary phase diagrams for the microemulsion systems have been determined at a surfactant-to-co-surfactant mass ratio of 3:1 and 298.15 K. From the microemulsion region of the phase diagrams, four formulations was selected and their physico-chemical properties as density, viscosity, refractive index, electrical conductivity and surface tension were measured at 298.15 K. The solubilities of celecoxib in all selected formulations were also determined and compared. The results show considerable increases in solubility of the celecoxib in the ionic liquid-based microemulsion systems.  相似文献   

16.
We have investigated the dynamic rheological properties of concentrated multiple emulsions to characterize their amphiphile composition at interfaces. Multiple emulsions (W1/O/W2) consist of water droplets (W1) dispersed into oil globules (O), which are redispersed in an external aqueous phase (W2). A small-molecule surfactant and an amphiphilic polymer were used to stabilize the inverse emulsion (W1 in oil globules) and the inverse emulsion (oil globules in W2), respectively. Rheological and interfacial tension measurements show that the polymeric surfactant adsorbed at the globule interface does not migrate to the droplet interfaces through the oil phase. This explains, at least partly, the stability improvement of multiple emulsions as polymeric surfactants are used instead of small-molecule surfactants.  相似文献   

17.
A three-step model of the transitional phase inversion (TPI) process for the formation of water-in-oil (W/O) emulsions is presented. Three types of emulsions exist in an emulsification process at different oil–water ratios and hydrophilic–lipophilic balance (HLB). A stable W/O emulsion was obtained using Sorbitan oleate (Span 80) and polyoxyethylenesorbitan monooleate (Tween 80) with a specified HLB and oil volume fraction. Oil was added into water, which contained the water-soluble surfactant, to dissolve the oil-soluble surfactant. This route allowed TPI to occur, and an interesting emulsification process was observed by varying the HLB, which corresponded to the change in the oil–water ratio. Two types of emulsions in the emulsification process were found: transition emulsion 1 (W/O/W high internal phase emulsion) and target emulsion 2 (W/O emulsion with low viscosity). This study describes the changes that occurred in the emulsification process.  相似文献   

18.
The stability and rheological behavior of oil-in-water (O/W) nano-emulsions formed with a blend of Span20-Tween20 have been studied with and without diutan microbial polysaccharide. It is found that there exist thresholds for the water content and emulsifier to obtain stable nano-emulsions using the emulsion inversion phase (EIP) method. The viscosity of the nano-emulsion is proportional to the emulsifier content and inversely proportional to the water content. High emulsifier content is not conducive to the thermal stability of the nano-emulsion. The addition of diutan gum with negative charge into the nano-emulsions increases the electrostatic repulsion between droplets and makes the droplet size smaller and more unifom, slowing down the coalescence and Ostwald ripening of the nano-emulsions. Due to the association of the diutan gum double helix, a three-dimensional network structure is formed in the continuous phase of nano-emulsions, which improves the stability of nano-emulsions and is also the main factor giving the nano-emulsion high viscoelasticity at high temperature. This study offers new insight into the nano-emulsion containing microbial polysaccharide and may serve as a guideline for practical applications of new nano-emulsion systems.  相似文献   

19.
The droplet size distribution (DSD) of emulsions is the result of two competitive effects that take place during emulsification process, i.e., drop breakup and drop coalescence, and it is influenced by the formulation and composition variables, i.e., nature and amount of emulsifier, mixing characteristics, and emulsion preparation, all of which affect the emulsion stability. The aim of this study is to characterize oil-in-water (O/W) emulsions (droplet size and stability) in terms of surfactant concentration and surfactant composition (sodium dodecyl benzene sulphonate (SDBS)/Tween 80 mixture). Ultraviolet-visible (UV-vis) transmission spectroscopy has been applied to obtain droplet size and stability of the emulsions and the verification of emulsion stability with the relative cleared volume technique (time required for a certain amount of emulsion to separate as a cleared phase). It is demonstrated that the DSD of the emulsions is a function of the oil concentration and the surfactant composition with higher stability for emulsions prepared with higher SDBS ratio and lower relative cleared volume with the time. Results also show that smaller oil droplets are generated with increasing Tween 80 ratio and emulsifier concentration.  相似文献   

20.
Abstract

The potential of polytetrafluoroethylene (PTFE) membranes as water‐in‐oil (W/O) emulsification devices was investigated to obtain uniformly sized droplets and to convert them into microcapsules and polymer particles via subsequent treatments. Uniform W/O emulsion droplets have not been achieved using glass membranes unless the membrane was rendered hydrophobic by treatment with silanes. If a PTFE membrane is capable of providing uniform droplets for a W/O emulsion, a coordinated membrane emulsification system can be established since glass membranes have been so successful for O/W (oil‐in‐water) emulsification. In order to examine the feasibility of PTFE membrane emulsification, O/W and W/O emulsion characteristics prepared using PTFE membranes were compared with those prepared by the conventional SPG (Shirasu porous glass) membrane emulsification method. A 3 wt.% sodium chloride solution was dispersed in kerosene using a low HLB surfactant. Effects of the membrane pore size, permeation pressure, and the type of emulsifiers and concentration on the droplet size and on the size distribution (CV, coefficient of variation) were investigated. The CV of the droplets was fairly low, and the average droplet size was correlated with the critical permeation pressure of the dispersed phase, revealing that the PTFE membrane could be used as a one‐pass membrane emulsification device. Low CV values were maintained with a Span 85 (HLB = 1.8) concentration, 0.2–5.0 wt.% and a range of HLB from 1.8–5.0. For a brief demonstration of practical applications, nylon‐6,10 microcapsules prepared by interfacial polycondensation and poly(acrylamide) hydrogels from inverse suspension polymerization are illustrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号