首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigate extremal charged black hole solutions in the four-dimensional string frame Gauss-Bonnet gravity with the Maxwell field and the dilaton. Without curvature corrections, the extremal electrically charged dilatonic black holes have singular horizon and zero Bekenstein entropy. When the Gauss-Bonnet term is switched on, the horizon radius expands to a finite value provided curvature corrections are strong enough. Below a certain threshold value of the Gauss-Bonnet coupling the extremal black hole solutions cease to exist. Since decreasing Gauss-Bonnet coupling corresponds to decreasing string coupling g s , the situation can tentatively be interpreted as classical indication on the black hole—string transition. Previously the extremal dilaton black holes were studied in the Einstein-frame version of the Gauss-Bonnet gravity. Here we work in the string frame version of the theory with the S-duality symmetric dilaton function as required by the heterotic string theory. The article is published in the original.  相似文献   

2.
Using an approximation scheme to deal with the centrifugal (pseudo-centrifugal) term, we solve the Dirac equation with the screened Coulomb (Yukawa) potential for any arbitrary spin-orbit quantum number κ. Based on the spin and pseudospin symmetry, analytic bound state energy spectrum formulas and their corresponding upper- and lower-spinor components of two Dirac particles are obtained using a shortcut of the Nikiforov-Uvarov method. We find a wide range of permissible values for the spin symmetry constant C s from the valence energy spectrum of particle and also for pseudospin symmetry constant C ps from the hole energy spectrum of antiparticle. Further, we show that the present potential interaction becomes less (more) attractive for a long (short) range screening parameter α. To remove the degeneracies in energy levels we consider the spin and pseudospin solution of Dirac equation for Yukawa potential plus a centrifugal-like term. A few special cases such as the exact spin (pseudospin) symmetry Dirac-Yukawa, the Yukawa plus centrifugal-like potentials, the limit when α becomes zero (Coulomb potential field) and the non-relativistic limit of our solution are studied. The nonrelativistic solutions are compared with those obtained by other methods.  相似文献   

3.
SU(2) Yang-Mills theory coupled in a non-minimal way to two scalar fields is discussed. For the massless scalar fields a family of finite energy solutions generated by an external, static electric charge is found. Additionally, there is a single solution which can be interpreted as a confining one. Similar solutions have been obtained in the magnetic sector. In the case of massive scalar fields the Coulomb problem is investigated. We find that asymptotic behavior of the fields can also, for some values of the parameters of the model, give confinement of the electric charge. Quite interestingly one glueball-meson coupling gives the linear confining potential. Finally, it is shown how, for one non-dynamical scalar field, we can derive the color dielectric generalization of the Pagels-Tomboulis model.Received: 22 April 2003, Published online: 12 September 2003  相似文献   

4.
We present a method to calculate two- and three-body amplitudes including the Coulomb potential in a momentum space. Our aim is to obtain the exact two-body Coulomb amplitudes used in three-body calculations, which reproduce the analytic phase shifts. For the purpose, our theory is based on the modified Coulomb potential (MCP) whose Fourier transformation is equivalent to the pure Coulomb potential in a configuration space, and the two-potential theory with an auxiliary potential. Moreover, one can analytically determine a decisive range R dec in the MCP. By using the MCP, we obtain the two-body Coulomb modified nuclear amplitude as well as the pure Coulomb amplitude. The calculated phase shift are very good fitting with the experimental data.  相似文献   

5.
邹德成  杨战营  岳瑞宏  于添翼 《中国物理 B》2011,20(10):100403-100403
In this paper, we study a new metric for slowly rotating charged Gauss-Bonnet black holes in higher-dimensional anti-de Sitter space. Taking the angular momentum parameter a up to second order, the slowly rotating charged black hole solutions are obtained by working directly in the action.  相似文献   

6.
The theory of Jordan-Thiry is investigated by using a five-dimensional Riemannian manifold V5 which admits a one-parameter group of isometries. The set of trajectories is supposed to represent the space-time of Relativity.The use of the induced metric in the quotient space leads to essential difficulties. It is necessary to consider a conformal metric and to modify the energy tensor in order to obtain the classical results of relativistic celestial mechanics. Moreover, the conformal metric brings out the evident interpretation of the fifteenth potential like a massless scalar field.A mass term referring to the scalar field is introduced; then the gravitational, electromagnetic, and mesonic scalar fields are unified through the metric of V5. Several results make the new theory very coherent; in particular, the exact relativistic equations of motion are obtained asymptotically when the matter density vanishes.Exact solutions are searched. The classical Schwarzschild solution and neighbouring solutions are valid in the interior of the matter. Special non-static solutions are also obtained; some of these may be interpreted locally as describing the “collapse” of neutron stars; others ones, analogous to Robertson's metric, can be used to build a cosmology of the unified field.  相似文献   

7.
When a classical Coulomb system has macroscopic conducting behavior, its grand potential has universal finite-size corrections similar to the ones which occur in the free energy of a simple critical system: the massless Gaussian field. Here, the Coulomb system is assumed to be confined, by walls made of an ideal conductor material; this choice corresponds to simple (Dirichlet) boundary conditions for the Gaussian field. For ad-dimensional (d2) Coulomb system confined in a slab of thicknessW, the grand potential (in units ofk B T) per unit area has the universal term (d/2)(d)/2dd/2Wd–1. For a two-dimensional Coulomb system confined, in a disk of radiusR, the grand potential (in units ofk B T) has the universal term (1/6) lnR. These results, of general validity, are checked on two-dimensional solvable models.Laboratoire Associé au Centre National de la Recherche Scientifique-URA 63.  相似文献   

8.
In a recent paper (Sharif and Shamir in Class. Quantum Grav. 26:235020, 2009), we have studied the vacuum solutions of Bianchi types I and V spacetimes in the framework of metric f (R) gravity. Here we extend this work to perfect fluid solutions. For this purpose, we take stiff matter to find energy density and pressure of the universe. In particular, we find two exact solutions in each case which correspond to two models of the universe. The first solution gives a singular model while the second solution provides a non-singular model. The physical behavior of these models has been discussed using some physical quantities. Also, the function of the Ricci scalar is evaluated.  相似文献   

9.
We study the non-relativistic Coulomb problem on a cone. The non-trivial topology of the cone breaks the symmetry associated with the conservation of the Lagrange-Laplace-Runge-Lenz vector. Classically this translates into a precession of the orbits, and quantum-mechanically into a splitting of the energy levels. For the scattering problem we find that classical multi-scattering is possible and that it gives rise to a wake structure; we also evaluate the full quantum wave function and from it recover the classical results.  相似文献   

10.
11.
We estimate the canonical and grand canonical partition function in a finite volume and prove stability and existence of the thermodynamic limit for the pressure of two component classical and quantum systems of particles with charge ± interacting via two body Yukawa — or Coulomb forces. In the case of Coulomb forces we require neutrality. For the classical system in two dimensions there exists a critical temperatureT c at and below which the system collapses. For the classical Yukawa system the correlation functions exist for arbitrary fugacity and the general structure of the pure phases can be analyzed completely.  相似文献   

12.
U. Kasper 《Annalen der Physik》1976,488(2):113-124
After an introduction to the formalism used throughout the paper there follows a concise presentation of the theory of fermion fields in one-tetrad gravitational theories. That presentation gives a hint to the construction of a bi-tetrad theory, the two tetrad fields being denoted by hAk and h?Ak. The tetrad field hAk. gives the Riemannian metric gkl while the tetrad field h?hAk is orthonormalized with respect to the flat metric akl. Specializing h?Ak in such a way that they have the form δAk in the preferred coordinates of Minkowski space and using a matter Lagrangian which contains these h?Ak only by the anholonomic components of the metric Christoffel symbols, we obtain a dynamical energy momentum tensor which is equal to the canonical one. Then we consider the relations of the bi-tetrad theory to other theories which are only covariant with respect to global Lorentz transformations from the beginning. As an example we formulate the main relations of the two-component neutrino theory.  相似文献   

13.
A variant of Brans-Dicke theory is discussed in which the singularities of electric, scalar and metric sector of classical self fields of a point gravitating source are in Jordan frame suppressed and their energy - momentum tensor is integrable. The total energy of the classical electron Coulomb field is finite and in accordance with special relativistic expression m 0 c 2. The same may be said with respect to total rest energy of the quasi-Coulomb field, i.e. the scalar self-field of the source in the case of electron and in the case of a source with zero electric charge. Although (pseudo-)Einstein equations in (pseudo-)Pauli frame are modified, all experimental predictions concerning gravitational effects of macroscopic (celestial) bodies are in accordance with that of GRT.  相似文献   

14.
We derive a stationary spherically symmetric vacuum solution in the framework of the Poincaré gauge field theory with a recently proposed quadratic lagrangian. We find a metric of the Schwarzschild-de Sitter type, both torsion and curvature are non vanishing, with torsion proportional to the mass and curvature proportional to the strong coupling constant κ. The metric exhibits two pieces, a newtonian potential describing the gravitational behavior of macroscopic matter, and a confining potential ~κr2 presumably related to the strong-interaction properties of hadrons. To our knowledge this is a new feature of a classical solution of a Yang-Mills type gauge theory.  相似文献   

15.
We reconsider the theory of the half-filled lowest Landau level using the Chern-Simons formulation and study the grand-canonical potential in the random-phase approximation (RPA). Calculating the unperturbed response functions for current- and charge-density exactly, without any expansion with respect to frequency or wave vector, we find that the integral for the ground-state energy converges rapidly (algebraically) at large wave vectors k, but exhibits a logarithmic divergence at small k. This divergence originates in the k-2 singularity of the Chern-Simons interaction and it is already present in lowest-order perturbation theory. A similar divergence appears in the chemical potential. Beyond the RPA, we identify diagrams for the grand-canonical potential (ladder-type, maximally crossed, or a combination of both) which diverge with powers of the logarithm. We expand our result for the RPA ground-state energy in the strength of the Coulomb interaction. The linear term is finite and its value compares well with numerical simulations of interacting electrons in the lowest Landau level. Received: 19 February 1998 / Revised: 25 March 1998 / Accepted: 17 April 1998  相似文献   

16.
Hořava proposed a non-relativistic renormalizable theory of gravitation, which is reduced to general relativity (GR) in large distances (infra-red regime (IR)). It is believed that this theory is an ultra-violet (UV) completion for the classical theory of gravitation. In this paper, after a brief review of some fundamental features of this theory, we investigate it for a static cylindrical symmetric solution which describes Cosmic string as a special case. We have also investigated some possible solutions, and have seen that how the classical GR field equations are modified for generic potential V(g). In one case there is an algebraic constraint on the values of three coupling constants. Finally as a pioneering work we deduce the most general cosmic string in this theory. We explicitly show that how the coupling constants distort the mass parameter of cosmic string. We deduce an explicit function for mass per unit length of the space-time as a function of the coupling constants. We compare this function with another which Aryal et al. (Phys. Rev. D 34:2263, 1986) have found in GR. Also we calculate the self-force on a massive particle near Hořava-Lifshitz straight string and we give a typical order for the coupling constant g 9. This order of magnitude proposes a cosmological test for validity of this theory.  相似文献   

17.
The Lanczos Potential is a theoretical useful tool to find the conformal Weyl curvature tensor C abcd of a given relativistic metric. In this paper we find the Lanczos potential L abc for the van Stockung vacuum gravitational field. Also, we show how the wave equation can be combined with spinor methods in order to find this important three covariant index tensor.  相似文献   

18.
Using only the general properties which the renormalized stress-energy tensor Tμν should satisfy—and not relying on any assumptions associated with specific renormalization techniques—we derive the expression for Tμν for conformally invariant fields in conformally flat spacetimes of two and four dimensions. In two dimensions, these arguments rederive the Davies-Fulling-Unruh expression for the stress tensor of a scalar field; in four dimensions the results agree with those of Brown and Cassidy, except that we exclude the local curvature term depending on fourth-order derivatives of the metric. The dynamics of a k = 0 Robertson-Walker universe filled with radiation of the conformally invariant field is investigated and it is found that the equations cease to admit a solution when the Planck density is reached.  相似文献   

19.
We examine the effect on cosmological evolution of adding a Gauss–Bonnet term to the standard Einstein–Hilbert action for a (1 + 3) + d dimensional Friedman–Robertson–Walker (FRW) metric. By assuming that the additional dimensions compactify as a power law as the usual 3 spatial dimensions expand, we solve the resulting dynamical equations and find that the solution may be of either de Sitter or Kasner form depending upon whether the Gauss–Bonnet term or the Einstein term dominates.  相似文献   

20.
Noncommutative geometry has been slowly emerging as a new paradigm of geometry which starts from quantum mechanics. One of its key features is that the new geometry is spectral in agreement with the physical way of measuring distances. In this paper we present a detailed introduction with an overview on the study of the quantum nature of space-time using the tools of noncommutative geometry. In particular we examine the suitability of using the spectral action as an action functional for the theory. To demonstrate how the spectral action encodes the dynamics of gravity we examine the accuracy of the approximation of the spectral action by its asymptotic expansion in the case of the round sphere S 3. We find that the two terms corresponding to the cosmological constant and the scalar curvature term already give the full result with remarkable accuracy. This is then applied to the physically relevant case of S 3 × S 1, where we show that the spectral action in this case is also given, for any test function, by the sum of two terms up to an astronomically small correction, and in particular all higher order terms a 2n vanish. This result is confirmed by evaluating the spectral action using the heat kernel expansion where we check that the higher order terms a 4 and a 6 both vanish due to remarkable cancelations. We also show that the Higgs potential appears as an exact perturbation when the test function used is a smooth cutoff function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号