首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The change in (1)H NMR chemical shifts upon hydrogen bonding was investigated using both experimental and theoretical methods. The (1)H NMR spectra of a number of phenols were recorded in CDCl(3) and DMSO solvents. For phenol, 2- and 4-cyanophenol and 2-nitrophenol the OH chemical shifts were measured as a function of concentration in CDCl(3). The plots were all linear with concentration, the gradients varying from 0.940 (phenol) to 7.85 (4-cyanophenol) ppm/M because of competing inter- and intramolecular hydrogen bonding. Ab initio calculations of a model acetone/phenol system showed that the OH shielding was linear with the H...O=C distance (R) for R < 2.1 A with a shielding coefficient of - 7.8 ppm/A and proportional to cos(2)phi where phi is the H...O=C--C dihedral angle. Other geometrical parameters had little effect. It was also found that the nuclear shielding profile is unrelated to the hydrogen bonding energy profile. The dependence of the OH chemical shift on the pi density on the oxygen atom was determined as ca 40 ppm/pi electron. This factor is similar to that for NH but four times the value for sp(2) hybridized carbon atoms. The introduction of these effects into the CHARGE programme allowed the calculation of the (1)H chemical shifts of the compounds studied. The CHARGE calculations were compared with those from the ACD database and from GIAO calculations. The CHARGE calculations were more accurate than other calculations both when all the shifts were considered and also when the OH shifts were excluded. The calculations from the ACD and GIAO approaches were reasonable when the OH shifts were excluded but not as good when all the shifts were considered. The poor treatment of the OH shifts in the GIAO calculations is very likely due to the lack of explicit solvent effects in these calculations.  相似文献   

2.
Twenty one conformationally fixed amines and their N,N-dimethyl derivatives were obtained commercially or synthesized. These included cis and trans 4-t-butyl cyclohexylamine, 2-exo and 2-endo norbornylamine, 2-adamantylamine, 4-phenylpiperidine, 1-napthylamine and tetrahydro-1-napthylamine. The (1)H NMR spectra of these amines were measured in CDCl(3) solution, assigned and the (1)H chemical shifts given. This data was used to investigate the effect of the amino group on the (1)H chemical shifts in these molecules. These effects were analyzed using the CHARGE model. This calculates the electric field and steric effects of the amino group for protons more than three bonds removed, together with functions for the calculation of two-bond and three-bond effects. The rotational isomerism about the C--N bond of the amino group was investigated by ab initio calculations of the potential energy surface (PES) about this bond at the HF/3-21G level. The resulting conformers were then minimized at the B3LYP/6-311 + + G (d,p) level. These geometries were then used to calculate the (1)H chemical shifts in the above compounds by CHARGE and the ab initio gauge-invariant atomic orbital (GIAO) method at the B3LYP/6-311 + + G(d,p) level and the shifts were compared with those observed. The compounds investigated gave 170 (1)H chemical shifts ranging from 0.60 to 8.2 ppm. The rms errors (obs.-calc.) were ca 0.1 ppm (CHARGE) and ca 0.2 ppm (GIAO). Large deviations of ca 1.0 ppm were observed for the NH protons in the GIAO calculations. The complex spectra of alkyl and aryl amines can thus be successfully predicted by both ab initio and semiempirical methods except for the NH protons, for which the ab initio calculations are not sufficiently accurate.  相似文献   

3.
The 1H NMR spectra of 24 compounds containing the ester group are given and assigned. These data were used to investigate the effect of the ester group on the 1H chemical shifts in these molecules. These effects were analysed using the CHARGE model, which incorporates the electric field, magnetic anisotropy and steric effects of the functional group for long-range protons together with functions for the calculation of the two- and three-bond effects. The effect of the ester electric field was given by considering the partial atomic charges on the three atoms of the ester group. The anisotropy of the carbonyl group was reproduced with an asymmetric magnetic anisotropy acting at the midpoint of the carbonyl bond with values of Deltachi(parl) and Deltachi(perp) of 10.1 x 10(-30) and -17.1 x 10(-30) cm3 molecule(-1). An aromatic ring current (=0.3 times the benzene ring current) was found to be necessary for pyrone but none for maleic anhydride. This result was confirmed by GIAO calculations. The observed 1H chemical shifts in the above compounds were compared with those calculated by CHARGE and the ab initio GIAO method (B3LYP/6-31G**). For the 24 compounds investigated with 150 1H chemical shifts spanning a range of ca 10 ppm, the CHARGE model gave an excellent r.m.s. error (obs - calc) of <0.1 ppm. The GIAO calculations gave a very reasonable r.m.s. error of ca 0.2 ppm although larger deviations of ca 0.5 ppm were observed for protons near to the electronegative atoms. The accurate predictions of the 1H chemical shifts given by the CHARGE model were used in the conformational analysis of the vinyl esters methyl acrylate and methyl crotonate. An illustration of the use of the CHARGE model in the prediction of the 1H spectrum of a complex organic molecule (benzochromen-6-one) is also given.  相似文献   

4.
The (1)H NMR spectra of a number of alcohols, diols and inositols are reported and assigned in CDCl(3), D(2)O and DMSO-d(6) (henceforth DMSO) solutions. These data were used to investigate the effects of the OH group on the (1)H chemical shifts in these molecules and also the effect of changing the solvent. Inspection of the (1)H chemical shifts of those alcohols which were soluble in both CDCl(3) and D(2)O shows that there is no difference in the chemical shifts in the two solvents, provided that the molecules exist in the same conformation in the two solvents. In contrast, DMSO gives rise to significant and specific solvation shifts. The (1)H chemical shifts of these compounds in the three solvents were analysed using the CHARGE model. This model incorporates the electric field, magnetic anisotropy and steric effects of the functional group for long-range protons together with functions for the calculation of the two- and three-bond effects. The long-range effect of the OH group was quantitatively explained without the inclusion of either the C--O bond anisotropy or the C--OH electric field. Differential beta and gamma effects for the 1,2-diol group needed to be included to obtain accurate chemical shift predictions. For DMSO solution the differential solvent shifts were calculated in CHARGE on the basis of a similar model, incorporating two-bond, three-bond and long-range effects. The analyses of the (1)H spectra of the inositols and their derivatives in D(2)O and DMSO solution also gave the ring (1)H,(1)H coupling constants and for DMSO solution the CH--OH couplings and OH chemical shifts. The (1)H,(1)H coupling constants were calculated in the CHARGE program by an extension of the cos(2)phi equation to include the orientation effects of electronegative atoms and the CH--OH couplings by a simple cos(2)phi equation. Comparison of the observed and calculated couplings confirmed the proposed conformations of myo-inositol, chiro-inositol, quebrachitol and allo-inositol. The OH chemical shifts were also calculated in the CHARGE program. Comparison of the observed and calculated OH chemical shifts and CH.OH couplings suggested the existence of intramolecular hydrogen bonding in a myo-inositol derivative.  相似文献   

5.
The (1)H chemical shifts of a series of sulfoxide and sulfone compounds in CDCl(3) solvent were obtained from experiment and the literature. These included dialkyl sulfoxides and sulfones (R(2)SO/R(2)SO(2), R = Me, Et, Pr, n-Bu), the cyclic compounds tetramethylene sulfoxide/sulfone, pentamethylene sulfoxide/sulfone and the aromatic compounds p-tolylmethylsulfoxide, dibenzothiopheneoxide/dioxide, E-9-phenanthrylmethylsulfoxide and (E) (Z)-1-methylsulfinyl-2-methylnaphthalene. The spectra of the pentamethylene SO and SO(2) compounds were obtained at -70 degrees C to obtain the spectra from the separate conformers (SO) and from the noninverting ring (SO(2)). This allowed the determination of the substituent chemical shifts (SCS) of the SO and SO(2) functional groups, which were analyzed in terms of the SO bond electric field, magnetic anisotropy and steric effect for long-range protons together with a model (CHARGE8d) for the calculation of the two and three bond effects. After parameterization, the overall root mean square (RMS) error (observed-calculated) for a dataset of 354 (1)H chemical shifts was 0.11 ppm. The anisotropy of the SO bond was found to be very small, supporting the dominant single bond S(+)--O(-) character of this bond.  相似文献   

6.
(1)H and (13)C NMR chemical shift predictions of homo- and methano[60]fullerenes containing chiral centers in attached fragment were made using the two-dimensional NMR technique (HH COSY, (1)H-(13)C HSQC and HMBC) and the quantum chemistry GIAO calculation method in the PBE/3ζ approach. The influence of a chiral substituent on the (13)C chemical shifts of diastereotopic fullerene carbons was estimated by comparing the calculated and experimental (13)C NMR spectra. The resonances of the fullerene carbons in α-, β- and δ-positions relative to the position of the substituent exhibit the greatest diastereotopic splitting.  相似文献   

7.
The 19F NMR shieldings for several remotely substituted rigid polycyclic alkyl fluorides with common sets of substituents covering a wide range of electronic effects were calculated using the DFT‐GIAO theoretical model. The level of theory, B3LYP/6–311+G(2d,p), was chosen based on trial calculations which gave good agreement with experimental values where known. The optimized geometries were used to obtain various molecular parameters (fluorine natural charges, electron occupancies on fluorine of lone pairs and of the C? F bond, and hybridization states) by means of natural bond orbital (NBO) analysis which could help in understanding electronic transmission mechanisms underlying 19F substituent chemical shifts (SCS) in these systems. Linear regression analysis was employed to explore the relationship between the calculated 19F SCS and polar substituent constants and also the NBO derived molecular parameters. The 19F SCS are best described by an electronegativity parameter. The most pertinent molecular parameters appear to be the occupation number of the NBO p‐type fluorine lone pair and the occupation number of the C? F antibonding orbital. This trend suggests that in these types of rigid saturated systems hyperconjugative interactions play a key role in determining the 19F SCS. Electrostatic field effects appear to be relatively unimportant. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
15N chemical shifts in an extensive series of para (15) and meta (15) as well as ortho (8) substituted benzonitriles, X-C6H4-CN, were measured in deuteriochloroform solutions, using three different methods of referencing. The standard error of the average chemical shift was less than 0.03 ppm in most cases. The results are discussed for both empirical correlations with substituent parameters and quantum chemical calculations. The 15N chemical shifts calculated at the GIAO/B3LYP/6-31 + G*//B3LYP/6-31 + G* level reproduce the experimental values well, and include nitrogen atoms in the substituent groups (range of 300 ppm with slope 0.98 and R = 0.998, n = 43). The 15N shifts in hydroxybenzonitriles are affected by interaction with the OH group. Therefore, these derivatives are excluded from the correlation analysis. The resultant 15N chemical shift correlates well with substituent constants, both in the simple Hammett or DSP relationships and the 13C substituent-induced chemical shifts of the CN carbon.  相似文献   

9.
A model based on classical concepts is derived to describe the effect of the nitro group on proton chemical shifts. The calculated chemical shifts are then compared to ab initio (GIAO) calculated chemical shifts. The accuracy of the two models is assessed using proton chemical shifts of a set of rigid organic nitro compounds that are fully assigned in CDCl3 at 700 MHz. The two methods are then used to evaluate the accuracy of different popular post-SCF methods (B3LYP and MP2) and molecular mechanics methods (MMX and MMFF94) in calculating the molecular structure of a set of sterically crowded nitro aromatic compounds. Both models perform well on the rigid molecules used as a test set, although when using the GIAO method a general overestimation of the deshielding of protons near the nitro group is observed. The analysis of the sterically crowded molecules shows that the very popular B3LYP/6-31G(d,p) method produces very poor twist angles for these, and that using a larger basis set [6-311++G(2d,p)] gives much more reasonable results. The MP2 calculations, on the other hand, overestimate the twist angles, which for these compounds compensates for the deshielding effect generally observed for protons near electronegative atoms when using the GIAO method at the B3LYP/6-311++G(2d,p) level. The most accurate results are found when the structures are calculated using B3LYP/6-311++G(2d,p) level of theory, and the chemical shifts are calculated using the CHARGE program based on classical models.  相似文献   

10.
The 1H chemical shifts of 48 amides in DMSO solvent are assigned and presented. The solvent shifts Δδ (DMSO‐CDCl3) are large (1–2 ppm) for the NH protons but smaller and negative (?0.1 to ?0.2 ppm) for close range protons. A selection of the observed solvent shifts is compared with calculated shifts from the present model and from GIAO calculations. Those for the NH protons agree with both calculations, but other solvent shifts such as Δδ(CHO) are not well reproduced by the GIAO calculations. The 1H chemical shifts of the amides in DMSO were analysed using a functional approach for near ( ≤ 3 bonds removed) protons and the electric field, magnetic anisotropy and steric effect of the amide group for more distant protons. The chemical shifts of the NH protons of acetanilide and benzamide vary linearly with the π density on the αN and βC atoms, respectively. The C=O anisotropy and steric effect are in general little changed from the values in CDCl3. The effects of substituents F, Cl, Me on the NH proton shifts are reproduced. The electric field coefficient for the protons in DMSO is 90% of that in CDCl3. There is no steric effect of the C=O oxygen on the NH proton in an NH…O=C hydrogen bond. The observed deshielding is due to the electric field effect. The calculated chemical shifts agree well with the observed shifts (RMS error of 0.106 ppm for the data set of 257 entries). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Molecular mechanics calculations plus the application of a refined Karplus equation gave the conformations of 19 pinanes. These range from a Y‐shaped geometry in the apopinene and α‐pinene series to a pseudo chair conformation in β‐pinene, nopinone and verbanone, a flattened chair in pinocarvone and the pinocarveols and a distorted Y shape for iso‐verbanone. These structures were then used as input to predict the 1H chemical shifts of these compounds by semi‐empirical (1H‐NMR spectra (HSPEC)) and ab initio gauge‐invariant atomic orbital (GIAO) calculations, the latter at the B3LYP hybrid density functional theory level using 6‐31++G** basis set. The two methods gave generally good agreement with the 184 observed shifts with root mean square (RMS) errors 0.07 ppm (HSPEC) and 0.10 ppm (GIAO), but the GIAO calculations gave several significant (>0.25 ppm) errors. One was for the H3 proton in apopinenone and other α,β unsaturated ketones; the others occurred for protons in close proximity to hydroxyl groups. To provide more information, smaller analogues of known geometry and chemical shifts were subject to the same analysis. In cyclopentenone, the Gaussian geometry gave good agreement with the observed shifts, but the MMFF94, MMX and MM3 geometries all gave errors for different protons. These results show clearly that the molecular geometries of the α,β unsaturated ketones are responsible for the errors. The errors for the alcohols were examined using ethanol as model and were shown to be due to the different possible conformations of the OH group. Similar GIAO calculations on substituted methanes gave good agreement for the methyl compounds but poor agreement for di and tri halosubstituted methanes. The aforementioned method of molecular mechanics plus GIAO calculations is shown to be a very useful tool for the investigation of molecular geometries and conformations. However, multihalogen compounds may require different basis sets for accurate calculations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
Six new nor-beta-lapachones have been synthesized from reaction of 3-bromo-nor-beta-lapachone with arylamines. These derivatives have potent anticancer properties against several cell lines. Here, we report complete unambiguous assignments of (1)H and (13)C chemical shifts of the new compounds. The assignments were made using a combination of one- and two-dimensional NMR techniques ((1)H, (13)C, (1)H-(1)H COSY, (1)H-(13)C HSQC, and (1)H-(13)C HMBC).  相似文献   

13.
The structural and electronic properties of berberine and berberrubine have been studied extensively using density functional theory (DFT) employing B3LYP exchange correlation. The geometries of these molecules have been fully optimized at the B3LYP/6-311G** level. The chemical shift of 1H and 13C resonances in NMR spectra of these molecules have been calculated using the gauge invariant atomic model (GIAO) method as implemented in Gaussian 98. One- and two-dimensional HSQC (1H-13C), HMBC (1H-13C) and ROESY (1H-1H) spectra were recorded at 500 MHz for the berberine molecule in D(2)O solution. All proton and carbon resonances were unambiguously assigned, and inter-proton distances obtained from ten observed NOE contacts. A restrained molecular dynamics (RMD) approach was used to get the optimized solution structure of berberine. The structure of berberine and berberrubine molecules was also obtained using the ROESY data available in literature. Comparison of the calculated NMR chemical shifts with the experimental values revealed that DFT methods produce very good results for both proton and carbon chemical shifts. The importance of the basis sets to the calculated NMR parameters is discussed. It has been found that calculated structure and chemical shifts in the gas phase predicted with B3LYP/6-311G** are in very good agreement with the present experimental data and the measured values reported earlier.  相似文献   

14.
Victor Wray 《Tetrahedron》1981,37(4):777-780
A four parameter equation, for the calculation of one-bond secondary OH group C-13 substituent chemical shifts in steroids and other rigid systems, is deduced from literature data by the use of a multiple regression analysis. The magnitude of the coefficients are shown to be consistent with deviations from simple additivity of C-13 shifts in various systems. Conformational information in non-rigid systems is evident from differences between the calculated and observed SCS values.  相似文献   

15.
The 1H and 13C NMR spectra of twelve phenyl acridine-9-carboxylates--alkyl-substituted in the phenyl fragment--and their 10-methyl-9-(phenoxycarbonyl)acridinium salts dissolved in CD3CN, CD3OD, CDCl3 and DMSO-d6 were recorded in order to examine the influence of the structure of these compounds and the properties of the solvents on chemical shifts and 1H-(1)H coupling constants. Experimental data were compared with 1H and 13C chemical shifts predicted at the GIAO/DFT level of theory for DFT(B3LYP)/6-31G** optimised geometries of molecules, as well as with values of 1H chemical shifts and 1H-(1)H coupling constants, estimated using ACD/HNMR database software to ensure that the assignment was correct. To investigate the relations between chemical shifts and selected structural or physicochemical characteristics of the target compounds, the values of several of these parameters were determined at the DFT or HF levels of theory. The HOMO and LUMO energies obtained at the HF level yielded the ionisation potentials and electron affinities of molecules. The DFT method provided atomic partial charges, dipole moments, LCAO coefficients of pz LUMO of selected C atoms, and angles reflecting characteristic structural features of the compounds. It was found that the experimentally determined 1H and 13C chemical shifts of certain atoms relate to the predicted dipole moments, the angles between the acridine and phenyl moieties, and the LCAO coefficients of the pz LUMO of the C atoms believed to participate in the initial step of the oxidation of the target compounds. The spectral and physicochemical characteristics of the target compounds were investigated in the context of their chemiluminogenic ability.  相似文献   

16.
(1)H, (13)C and (15)N NMR chemical shifts for a variety of novel quinoxalines were determined by different 2D methods and were calculated using the GIAO DFT approach. Comparison with experimental data shows good correlations in the case of (1)H, (13)C and (15)N chemical shifts. Different combinations of basis sets were tested. In non-polar solvents quinoxalines exist as dimers owing to strong hydrogen bonding. Calculations for dimers improve the correlation between experiment and theory. Additive empirical methods for estimating chemical shifts have drawbacks and have to be used with a great care for this type of compound.  相似文献   

17.
This work presents the substituent effects on the 1H and 13C NMR chemical shifts in the cis-isomer of 3-Y-cyclohexanols (Y = Cl, Br, I, CH3, N(CH3)2 and OCH3) and 3-Y-1-methoxycyclohexanes (Y = F, Cl, Br, I, CH3, N(CH3)2 and OCH3). It was observed that the H-3 chemical shift, due to the substituent alpha-effect, increases with the increase of substituent electronegativity when Y is from the second row of the periodic table of elements, (CH3 *sigma(C3--H3a) interaction energy. This interaction energy, for the halogenated compounds, decreases with an increase in size of the halogen, and this is a possible reason for the largest measured chemical shift for H-3 of the iodo-derivatives. The beta-effect of the analyzed compounds showed that the chemical shift of hydrogens at C-2 and C-4 increases with the decrease of n(Y) --> *sigma(C2-C3) and n(Y) --> *sigma(C3-C4) interaction energies, respectively, showing a behavior similar to H-3. The alpha-effect on 13C chemical shifts correlates well with substituent electronegativity, while the beta-effect is inversely related to electronegativity in halogenated compounds. NBO analysis indicated that the substituent inductive effect is the predominant effect on 13C NMR chemical shift changes for the alpha-carbon. It was also observed that C-2 and C-4 chemical shifts for compounds with N(CH3)2, OCH3 and F are more shielded in comparison to the compounds having a halogen, most probably because of the larger interaction of the lone pair of more electronegative atoms (n(N) > n(O) > n(F)) with *sigma(C2-C3), *sigma(C3-C4) and *sigma(C3-H3a) in comparison with the same type of interaction with the lone pair of the other halogens.  相似文献   

18.
53Cr chemical shifts of CrO4(2-), Cr2O7(2-), CrO3X-, CrO2X2(X = F, Cl), and Cr(CO)5L (L = CO, PF3, CHNH2, CMeNMe2) are computed, using geometries optimized with the gradient-corrected BP86 density functional, at the gauge-including atomic orbitals (GIAO)-, BPW91-, and B3LYP levels. For this set of compounds, substituent effects on delta(53Cr) are better described with the pure BPW91 functional than with B3LYP, in contrast to most other transition-metal chemical shifts studied so far. For selected cases, 53Cr NMR line widths can be rationalized in terms of electric field gradients (EFGs) computed with the BPW91 functional, but in general other factors such as molecular correlation times appear to be dominating. 53Cr chemical shifts and EFGs are predicted for CrO3, Cr(C6H6)2, Cr(C6H6)CO3, and, with reduced reliability, for Cr2(mu2-O2CH)4.  相似文献   

19.
The 19F substituent chemical shifts (SCS) of meta- and para-benzoyl fluorides are found to correlate well with substituent parameters using the dual substituent parameter (DSP) equation, indicating that they reflect electronic perturbations induced by the substituent. The direction of the SCS values is such that donating substituents cause upfield shifts whilst acceptors cause downfield shifts. STO-3G calculations indicate that substituents induce only very small changes in π-electron density about the fluorine atom, but that these changes correlate reasonably well with the observed SCS values. For the para series, the slope of the relationship between δq and 19F SCS is 5000 ppm/electron, indicating the great sensitivity of the flourine atom to small changes in electron density.  相似文献   

20.
Gauge including atomic orbitals (GIAO) (1)H NMR chemical shift calculations have been performed for 66 organic compounds at 72 different levels of theory using the multi-standard approach (MSTD) previously developed for (13)C NMR. This straightforward computational technique involves the combination of methanol and benzene as standards. The studied methodology has been shown to predict (1)H NMR chemical shifts efficiently at different levels of theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号