首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The deformation, drainage, and rupture of an axisymmetrical film between colliding drops in the presence of insoluble surfactants under the influence of van der Waals forces is studied numerically at small capillary and Reynolds numbers and small surfactant concentrations. Constant-force collisions of Newtonian drops in another Newtonian fluid are considered. The mathematical model is based on the lubrication equations in the gap between drops and the creeping flow approximation of Navier–Stokes equations in the drops, coupled with velocity and stress boundary conditions at the interfaces. A nonuniform surfactant concentration on the interfaces, governed by a convection–diffusion equation, leads to a gradient of the interfacial tension which in turn leads to additional tangential stress on the interfaces (Marangoni effects). The mathematical problem is solved by a finite-difference method on a nonuniform mesh at the interfaces and a boundary-integral method in the drops. The whole range of the dispersed to continuous-phase viscosity ratios is investigated for a range of values of the dimensionless surfactant concentration, Peclét number, and dimensionless Hamaker constant (covering both “nose” and “rim” rupture). In the limit of the large Peclét number and the small dimensionless Hamaker constant (characteristic of drops in the millimeter size range) a fair approximation to the results is provided by a simple expression for the critical surfactant concentration, drainage being virtually uninfluenced by the surfactant for concentrations below the critical surfactant concentration and corresponding to that for immobile interfaces for concentrations above it.  相似文献   

2.
A mathematical model is developed for the flow of water through a channel impregnated with a polymer gel that is treated as an elastic and deformable porous medium. The model uses a Brinkman equation along with an experimentally observed velocity-dependent permeability. Numerical and approximate analytical solutions are given. These results show that the gel intrinsic properties, i.e., gel reference permeability and elastic index, control the water flow. First, the permeability of water flow through the gel increases with an increase of gel reference permeability. Second, the velocity of water decreases when the gel velocity exponent increases. Our theoretical results show that the velocity-dependent permeability of water flow through polymer gels is in fact an intrinsic property of the gel rather than a property of the channel or some interaction between the gel and the pore walls.  相似文献   

3.
Preparation and characterization of hollow spheres of rutile   总被引:7,自引:0,他引:7  
Hollow spherical particles of rutile were obtained by coating colloidal polystyrene beads with a titanium oxide hydrate layer and subsequently calcining at elevated temperatures under an oxygen atmosphere. In order to investigate the optimum conditions for the preparation of these hollow beads the maximum temperature and heating rate were systematically varied. The dimensions of the voids and the shell thickness of the hollow beads can be tailored by the size of the polystyrene beads and the thickness of the inorganic layer, respectively.  相似文献   

4.
Influence of electrical double-layer interaction on coal flotation   总被引:5,自引:0,他引:5  
In the early 1930s it was first reported that inorganic electrolytes enhance the floatability of coal and naturally hydrophobic minerals. To date, explanations of coal flotation in electrolytes have not been entirely clear. This research investigated the floatability of coal in NaCl and MgCl2 solutions using a modified Hallimond tube to examine the role of the electrical double-layer interaction between bubbles and particles. Flotation of coal was highly dependent on changes in solution pH, type of electrolyte, and electrolyte concentration. Floatability of coal in electrolyte solutions was seen not to be entirely controlled by the electrical double-layer interaction. Coal flotation in low electrolyte concentration solutions decreases with increase in concentration, not expected from the theory since the electrical double layer is compressed, resulting in diminishing the (electrical double layer) repulsion between the bubble and the coal particles. Unlike in low electrolyte concentration solutions, coal flotation in high electrolyte concentration solutions increases with increase in electrolyte concentration. Again, this behavior of coal flotation in high electrolyte concentration solutions cannot be quantitatively explained using the electrical double-layer interaction. Possible mechanisms are discussed in terms of the bubston (i.e., bubble stabilized by ions) phenomenon, which explains the existence of the submicron gas bubbles on the hydrophobic coal surface.  相似文献   

5.
Two amphiphilic PAMAM dendrimers are synthesized by attaching 12-hydroxydodecanoic acid (HA) chains to a poly(amido amine) (PAMAM) dendrimer core (including generation I and generation II). The limiting molecular area obtained from the surface pressure-area isotherm at the air/water interface suggests the edge-on configuration for both dendrimers in Langmuir films. The edge-on arrangement is also supported by the atomic force microscopic (AFM) studies of the Langmuir-Blodgett films.  相似文献   

6.
The interactions between PEO and sodium alkylcarboxylates (octyl, decyl, and dodecyl) have been investigated by conductivity measurements and gel permeation chromatography (GPC). Also included in the study was sodium dodecyl sulfate. From the conductivity measurements the critical aggregation concentration, ionization degree, and binding ratios were determined; the binding ratio was also determined from GPC. PEO–surfactant interactions were observed for all the studied surfactants, except sodium octanoate. For the polymer–surfactant complexes the ionization degree was in all cases observed to be about 0.2 higher than the ionization degree for the corresponding aqueous micelles. Further, the binding ratio decreased somewhat with decreasing chain length of the alkylcarboxylate. The Gibbs free energy showed that the polymer–surfactant interaction decreases with decreasing chain length of the alkylcarboxylates and is weaker for alkylcarboxylate compared to alkylsulfate of similar chain length.  相似文献   

7.
The basic charging properties of nearly spherical hematite particles were studied by using potentiometric titration and the electroacoustic technique. Both the pH and the ionic strength dependence of the surface charge and the ζ-potential were studied in detail. For calculating the ζ-potential from mobility data a few different theories were used and obtained differences are discussed. At pH values higher than 7 and at high electrolyte concentrations (50 mM and 100 mM NaNO3), it was difficult to fit the mobility data by using the full mobility spectra including both magnitude and phase angle at several frequencies. In this regime the best fits were obtained by using a theory for aggregated complexes (porous particles). From potentiometric titrations in 0.01, 0.1, and 1.0 M NaNO3, parameters for a 1-pK Basic Stern Model were determined. The model was used to examine the possibility of correlating the experimentally determined ζ-potentials to the model-calculated potentials at the Stern plane. Qualitatively, the model predicted the correct ionic strength dependence of the ζ-potentials, and there was also a rather good quantitative agreement at high ionic strengths (50 and 100 mM NaNO3). However, at lower ionic strengths the model predicted values up to 40% higher than those found from the electroacoustic study. Surface conduction behind the slip plane was discussed as a possible cause for this discrepancy.  相似文献   

8.
The present study demonstrates the instability of streaming in a fluid layer sandwiched between two other bounded fluids under the influence of a vertical periodic electric field. The fluids are of a viscoelastic nature where the constitutive equation is Kelvin type. Due to the inclusion of streaming flow and the influence of a periodic force, a mathematical simplification is urged. Equation of motion is solved in light of the weakness effect for the viscoelastic properties. The instabilization of the problem is examined in view of the linearization of the perturbation approach. The boundary value problem is discussed for a charged or uncharged fluid sheet. Both cases are lead to derive linear coupled Mathieu equations with complex coefficients and damping terms. Stability analysis is discussed through a simplified configuration for the system of Mathieu equations. It is found that the elasticity parameters as well as the viscosity parameters have a stabilizing influence. The field frequency plays a destabilizing role in the presence of surface charges and a dual role in the absence of surface charges. The presence of surface charges retards the stabilizing influence of the viscoelastic effects. This calculation shows that the fluid velocity retards the destabilizing influence for the electric field. The increase of the thickness of the fluid sheet plays two different roles. A stabilizing role in the presence of surface charges and a destabilizing influence in their absence.  相似文献   

9.
In this study the wetting behavior of converging-diverging and diverging-converging capillaries is investigated numerically using an in-house written, finite-element code. An interface tracking procedure based on the predicted change in the total liquid volume, to update the interface location, and Cox's formulation, to determine the dynamic contact angle and the interface shape, is proposed and used. Flow simulations revealed that both converging-diverging and diverging-converging capillaries exhibit significantly slower wetting behavior than straight capillaries and that any deviation in the capillary diameter necessarily tends to slow the overall wetting speed. This behavior was attributed to local regions of very low capillary pressure and high viscous retardation force when the capillary diameter at the interface was significantly larger than the capillary diameter over the upstream fluid. Though the local wetting velocities were different, when equivalent capillaries were compared it was found that both converging-diverging and diverging-converging capillaries had the same total fill time independent of the number of irregular regions, suggesting that the simple model is sufficient for predicting the overall effect. The influence of surface tension and contact angle on the total wetting time was found to be similar for both straight and irregularly shaped capillaries.  相似文献   

10.
A Novel Method for Surface Free-Energy Determination of Powdered Solids   总被引:1,自引:0,他引:1  
Interfacial solid/liquid interactions play a crucial role in wetting, spreading, and adhesion processes. In the case of a flat solid surface, contact angle measurements are commonly utilized for the determination of the solid surface free energy and its components. However, if such a surface cannot be obtained, then the contact angle can not be measured directly. Usually methods based on imbibition of probe liquids into a thin porous layer or column are applied. In this paper a novel method, also based on the capillary rise, is proposed for the solid surface free-energy components determination. Actually, it is a modification of the thin column wicking method; similar theoretical background can be applied together with that appropriate for the capillary rise method of liquid surface tension determination. The proposed theoretical approach and procedure are verified by using single glass capillaries, and then alumina and ground glass powders were used for the method testing. Thus obtained surface free-energy components for these solids, for both glass and alumina, agree well with the literature values.  相似文献   

11.
Specific conductivities of alkyldimethylbenzylammonium chlorides (alkyl=decyl-, dodecyl-, tetradecyl-, and hexadecyl-) in aqueous solutions were measured as a function of molality and temperature. Critical micelle molalities (cmc) and degrees of ionization of the micelles, beta, were estimated from the dependence of the specific conductivity on molality. It was found that temperature dependence of cmc is U-shaped with a minimum shifting toward higher temperatures with a decrease in the chain length of the alkyl group. The temperature dependence of ln xcmc (where xcmc is the cmc in mole fraction units) was fitted to the equation of Muller, which we modified by taking into account the temperature dependencies both of beta and of change in heat capacity upon micellization. From the fitting parameters, Gibbs free energies, enthalpies, and entropies of micellization as a function of temperature were estimated.  相似文献   

12.
Aggregation behavior in aqueous solution of a series of poly (ethylene glycol) (PEG)-based macromonomers with methacryloyl group as the only hydrophobic segment has been investigated using surface tension, steady-state and time-resolved fluorescence spectroscopy using pyrene as a probe, and small-angle neutron scattering techniques. The general formula of these macromonomers is CH2=C(CH3)–CO–O–Em–CH3, where E is the ethylene glycol unit and m=8 (ME8), 18 (ME18), 49 (ME49), and 120 (ME120). The results indicate that a macromonomer with 8 ethylene glycol units forms as an aggregate above a certain critical concentration, which can be defined as critical aggregation concentration. The observed high value of I1/I3 in pyrene emission spectra at the interface of these aggregates and the inability to scatter a neutron beam by these aggregates indicate that the hydrophobic cluster formed by this macromonomer is remarkably solvated. ME18 has a tendency to aggregate but others do not form any hydrophobic cluster. The homopolymerization behaviors of these macromonomers in an aqueous medium at 70°C are consistent with these possibi- lities.  相似文献   

13.
Dynamic surface tension and its diffusional decay have been studied with four different polydisperse C12E7 at different temperatures and different concentrations. The CMC and the headgroup area from equilibrium surface tension were shown with polydispersity and temperature. The chain length of oxyethylene on the surface was derived from comparison between the headgroup area of monodisperse dodecyl ethoxylates and that of polydisperse C12E7. The values for (Deff/D) were deduced with a diffusion-controlled adsorption model using parameters obtained from equilibrium surface tension. It was shown at short adsorption time that molecules were really adsorbed onto the surface in a diffusion-controlled manner. At a comparably long adsorption time, the ratios (Deff/D) were calculated by assuming the selective adsorption onto the surface. The modified Arrhenius-type equation was proposed by putting a concentration term in front of the exponential terms. The modified Arrhenius-type equation gave Ea=30 kJ/mole for this system. Ea directly derived without an Arrhenius plot was between 9 to 11 kJ/mole. It was an indication that the activation energy alone was not enough to explain the decay of dynamic surface tensions.  相似文献   

14.
Iminodiacetic acid (IDA) and octyl moieties were covalently bound on nonporous particles, which were prepared from dispersion polymerization of methyl methacrylate and glycidyl methacrylate. After being charged with copper ions, the IDA-bound particles could specifically adsorb deoxyribonuclease I (DNase I) through the affinity interaction between protein and immobilized metal ion. A mixed-ligand (metal–chelate and octyl–bound) support was obtained after hydrophobic (octyl) groups were also introduced to the particle surface. The affinity adsorption of DNase I on the copper–IDA chelate was influenced by interaction between the protein and the bound octyl group. Both the affinity and the hydrophobic interactions could be well described by the Langmuir isotherms. The equilibrium adsorption constants were estimated separately to be 0.96 and 0.50 liter g−1 for affinity and hydrophobic bindings, respectively. For binding on mixed-ligand support, the adsorption constant was 0.45 liter g−1. It was evident that both affinity and hydrophobic interactions are involved in the adsorption of proteins onto mixed-ligand particles. Desorption of the inactive proteins from the support was possible by increasing the hydrophobicity of the solution.  相似文献   

15.
The dynamic electrophoretic mobility of a concentrated dispersion of biocolloids such as cells and microorganisms is modeled theoretically. Here, a biological particle is simulated by a particle, the surface of which contains dissociable functional groups. The results derived provide basic theory for the quantification of the surface properties of a biocolloid through an electroacoustic device, which has the merit of making direct measurement on a concentrated dispersion without dilution. Two key parameters are defined to characterize the phenomenon under consideration: the first, A, is associated with the pH of the dispersion, and the second, B, is associated with the equilibrium constant of the dissociation reaction of the functional group. We show that if A is large and/or B is small, the surface potential is high, and the effect of double-layer polarization becomes significant. In this case the dynamic electrophoretic mobility may have a local maximum and a phase lead as the frequency of the applied electric field varies. Due to the hydrodynamic interaction between neighboring particles, the dynamic electrophoretic mobility decreases with the concentration of dispersion.  相似文献   

16.
A new concept of liquid entry pressure measurements is applied to study the hydrophobicity of microporous membranes for aqueous alcohol solutions. The effects of alcohol concentration, type of alcohol, and temperature on liquid entry pressure of the membrane have been studied. Two theoretical equations for the determination of membrane pore size have been proposed. The former equation was developed taking into account the deviation from the Laplace–Young equation due to the membrane structure by means of the structure angle. The latter equation was established considering only the range of alcohol concentration in which the dispersion component of liquid surface tension remains practically constant. Hydrophobicity has been expressed in terms of wetting surface tension, γLw. Based on these measurements, the maximum concentration before the spontaneous wetting occurs would be predicted.  相似文献   

17.
Mixed monolayers of Schiff-base complex Cu(SBC18)2 with an octadecyl hydrocarbon chain and Calix[4]arene without a long alkyl chain at an air/water interface were studied in ultrapure water at different temperatures. Interface behavior and thermodynamic estimation of the mixed monolayer indicate that a strong intermolecular interaction exists between the mixed components (Cu(SBC18)2 and calix[4]arene) and the two-dimensional miscibility decreases with the molar fraction of Cu(SBC18)2. It is noticeable that the calix[4]arene monolayer can be transferred successfully onto solid substrates due to the introduction of Cu(SBC18)2. FTIR transmission and UV-Vis absorption spectra of mixed LB films provide further evidence of molecular interaction between the headgroups.  相似文献   

18.
Thin films of tungsten trioxide (WO3) for electrochromic application were synthesized by potentiostatic method by using a peroxytungstic acid as a solution precursor. The morphology of the films with and without postthermal annealing was analyzed by atomic force microscopy. When they were in contact with the liquid electrolyte (LiI in propylene carbonate, PC) and under alternatively applied negative (−1.5 V) and positive (+1.0 V) potentials, the transient optical transmittance modulations at wavelength of 650 nm of the as-deposited and 60 °C annealed WO3 samples were higher than that of 100 °C annealed WO3 films, and the switching times between the colored and bleached states were related to the surface morphology of the WO3 films. In polymeric gel electrolyte (LiI and polymethyl methacrylate in PC) devices, longer time was required for complete coloration as well as bleaching process compared with the liquid one. A parametric analysis was made for each of the transient optical transmittance curves of WO3-based electrochromic devices to extract the values of the response time in coloration (reduction) and bleaching (oxidation) processes. It concludes that the coloration process was determined by the exchange of current density at the electrolyte–WO3 interface and a possible inhomogeneous interfacial potential for ion intercalation retards the effective coloration time. The bleaching process seems to be controlled by the space charge-limited lithium ion diffusion in WO3 electrode and the ionic conductivity of the electrolyte as well.  相似文献   

19.
In view of the fact that many substances generally exhibit very little ultraviolet absorbance and the absence of native fluorescence, a new strategy with simple instrumentation and excellent analytical performance combining high performance liquid chromatography (HPLC) with resonance Rayleigh scattering (RRS) was developed. It was validated for the quantification of aminoglycosides (AGs). This fact was also carefully calculated by quantum chemistry. However, the sensitivity was probably limited by the volume of flow-through cell. Therefore, the result calls for a suitable one to ensure optimal RRS signal. Interestingly, when serum or urine samples of analytes were analyzed by this method, they were all well resolved without any interference, which would hold a new perspective to be applied in the determination of substances in biological matrix.  相似文献   

20.
A rapid and simple method for the extraction and preconcentration of N-methylcarbamates (NMCs) (carbofuran, carbaryl and promecarb) in water samples using dispersive liquid–liquid microextraction (DLLME) using chemometrics was developed. Influence variables such as volume of extracting (CHCl3) and dispersing solvents (ACN), pH and ionic strength, extraction time and centrifugation time and speed were screened in a 27–4 Plackett–Burman design was investigated. The significant variables were optimized by using a central composite design (CCD) combined with desirability function (DF). At optimum conditions values of variables set as 126 μL chloroform, 1.5 mL acetonitrile, 1 min extraction time, 10 min centrifugation at 4000 rpm min−1, natural pH, 4.7% (w/v) NaCl, the separation was reached in less than 14 min using a C18 column and an isocratic binary mobile phase (acetonitrile: water (50:50, v/v)) with flow rate of 1.0 mL min−1. At optimum conditions method has linear response over 0.001–10 μg mL−1 with detection limit between 0.0001 and 0.0005 μg mL−1 with relative standard deviations (RSDs) in the range 2.18–5.06% (n = 6).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号