首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The dynamic properties of polymer melts are investigated in the range of normal liquid regime to the supercooled liquid regime. The polymer is modeled as a coarse-grained bead-spring model with chain length ranging from 5 to 160. The mean squared displacement and non-Gaussian parameter are used to describe the self diffusion of polymer beads. We find slow dynamics with decreasing temperature and increasing chain length. The time evolution of non-Gaussian parameters shows two peaks(or one peak one shoulder) in the α-relaxation time, τα, regime and sub-diffusion time regime, respectively, where the first primary peak indicates the dynamic heterogeneity stemmed from the motion of beads, and the secondary peak is the result of correlated motion along a polymer chain. Moreover, the relaxation of polymer beads shows clear two-step decay in supercooled melts and the dynamics shows growing heterogeneity with decreasing temperature. As chain length is increased, a peak of the dynamic susceptibility occurs, and the peak height,χ*4, increases and then reaches a plateau. The curves of the height of the first peak of α_2, α _2~*, versus τ and the curves of χ_4~*α versus τα follow two master curves for different chain lengths. Our results indicate the similarity of dynamic heterogeneity dominated by the motion of single bead even the chain length is different. It is interesting to find that the Stokes-Einstein(SE) relation between τα and diffusion coefficient D, D~τ-1 q, is highly length-scale dependent. The SE relation breaks down in both normal melts regime and supercooled regime at large magnitude of wave vectors, attributed to the non-Brownian motion arising from the chain connectivity and growing heterogeneity due to supercooling. However, the SE relation is reconstructed when the probing length scale is large(at small magnitude of wave vectors). Our results show a hierarchical physical picture of the supercooled polymeric dynamics.  相似文献   

2.
Synthetic procedures have been developed and compounds of composition K x Rb y Cs z TaWO6 (x + y + z = 1) have been obtained. Their structure has been investigated by X-ray diffractometry. It has been shown that a continuous series of solid solutions is formed in the ternary system under study. Thermal decomposition of AITaWO6 compounds (AI = K, Rb, Cs) has been investigated by high-temperature X-ray diffractometry.  相似文献   

3.
The Mn3s X-ray photoelectron spectra of manganites were studied. It was shown that for the formal valence of manganese from 3+ to 3.3+, the doping holes are O2p in character; as the valence of manganese increases further, the Mn3d states acquire holes. For La0.7Sr0.3MnO3, the Mn3p-3d resonance spectra provided information about the occupied and unoccupied Mn3d states, and the correlation energy U = 6.7 eV was determined experimentally. An analysis of X-ray dichroism on the L absorption spectra of three-dimensional La7/8Sr1/8MnO3 showed that the cooperative Jahn Teller distortion of the orthorhombic phase at 240 K was related to (x 2 ? z 2)/(y 2 ? z 2) type orbital ordering.  相似文献   

4.
The influence of silver myristate used as a precursor of silver nanoparticles on the direct current conductivity σ dc of epoxy polymer within the concentration range of ≤0.8 wt % was investigated. The value of direct current conductivity was determined on the basis of analysis of the frequency dependence of complex permittivity within the frequency range of 10?2–105 Hz. The temperature dependence of σ dc is composed of two regions. The dependence corresponds to the Vogel-Fulcher-Tammann empirical law σ dc = σ dc0exp{?DT 0/(T-T 0)} (where T 0 is the Vogel temperature and D is the strength parameter) at temperatures higher than the glass transition temperature T g. At the same time, T 0 does not depend on the concentration of nanoparticles. The Arrhenius temperature dependence characterized by activation energy about 1.2 eV is observed at temperatures lower than T g. The observed shape of the temperature dependence is related to the change in the mechanism of conductivity after “freezing” of ionic mobility at temperatures lower than T g. The value of σ dc is increased as the concentration of nanoparticles is raised within the temperature range of T > T g. The obtained dependence of σ dc on silver myristate concentration is similar to the root one, indicating the absence of percolation within the studied range of concentrations.  相似文献   

5.
The existence of the [SrF0.8O0.1]2.5[Mn6O12] = Sr2.5Mn6O12.5 ? δF2 compound was established in the SrO-Mn2O3-SrF2 system at 900°C and p(O2) = 1 atm. The crystal structure of strontium fluoromanganite was determined from the X-ray powder diffraction data, electron diffraction, and high-resolution electron microscopy. It can be described in the monoclynic system with four Miller hklm indices: hklm: H = h a* + k b* + l c 1 * + m q 1, q 1, q 1 = c 2 * = γc 1 * , γ ≈ 0.632, aa ≈ 9.72 Å, b ≈ 9.55 Å, c 1 ≈ 2.84 Å, c 2 ≈ 4.49 Å, monoclinic angle γ ≈ 95.6°. The electromotive force method with a solid fluorine ion electrolyte was used to refine the composition of fluoromanganite and determine the thermodynamic functions of its formation from phases neighboring in the phase diagram (SrMn3O6, Mn2O3, SrF2, and oxygen), ΔG°, kJ/mol = ?(111.7 ± 1.9) + (89.5 ± 1.5) × 10?3 T.  相似文献   

6.
We predict the possibility of existence of the new lithium boride LiB11 with polymorphism. For energy reasons, the preferred type is α′-LiB11 (trigonal space group R3m, a h = 0.4982 nm, c h = 1.1123 nm, z h = 3, ρ = 2.63 g/cm3), with a framework built of tetrahedra and one-capped octahedra. α′-LiB11 is pseudoplastic because of twinning via the high-symmetry state of α-LiB11 (cubic space group \(F\bar 43m\), a = 0.6810 nm, z = 4, ρ = 2.65 g/cm3) and a bipolaron semiconductor. α → α′ transition is accompanied by the 0.0627-nm displacement of 1/11 B atoms. The β′ polymorph (tetragonal space group \(I\bar 4m2\), a = 0.4404 nm, c = 0.7708 nm, ρ = 2.80 g/cm3) is transformation hardened because of the transition to the α′ phase. We infer that LiB11 formation is possible under high pressure.  相似文献   

7.
Curcumin, a polyphenolic compound, has shown a wide range of pharmacological activities and has been widely used as a food additive. However, the clinical use of curcumin is limited to some extent because of its poor water solubility and low bioavailability. To overcome these problems, many approaches have been attempted and structural modification of curcumin by microbial transformation has been proven to be an alternative. In this study, we isolated a novel yeast strain Pichia kudriavzevii ZJPH0802 from a soil sample, which is capable of converting curcumin to its derivatives. The transformed products by this strain were evaluated by HPLC, (+) electrospray ionization (ESI)-MSn, and 1H nuclear magnetic resonance methods. Compared with controls, two new peaks of the transformed broth appeared at retention times of 26 min (I) and 62 min (II) by HPLC analysis. The two transformed products were then further identified by (+) ESI-MSn. The spectrum showed that compound I had an accurate [M+H+NH3]+ ion at m/z 392, [M+H]+ ion at m/z 375, [M+H–H2O]+ ion at m/z 357, and (+) ESI-MS3 spectrum showed that ion at m/z 357 could further form fragment ions at m/z 339, 177, and 163; compound II had an accurate [M+H]+ ion at m/z 373, [M+H–H2O]+ ion at m/z 355, and (+) ESI-MS3 spectrum showed that ion at m/z 355 could further form fragment ions at m/z 219, 179, 177, 163, and 137. These two transformed products thereby were confirmed as hexahydrocurcumin (I) and tetrahydrocurcumin (II).  相似文献   

8.
The substitution equilibria AuCl 2 ? + iNH 4 + = Au(NH3)iCl2 ? i + iCl? + iH+, β i * . were studied pH-metrically at 25°C and I = 1 mol/L (NaCl) in aqueous solution. It was found that logβ 1 * = ?5.10±0.15 and logβ 2 * = ?10.25±0.10. For equilibrium AuNH3Clsolid = AuNH3Cl, log K s = ?3.1±0.3. Taking into account the protonation constants of ammonia (log K H = 9.40), the obtained results show that for equilibria AuCl 2 ? + iNH3 = Au(NH3)iCl2 ? i + iCl?, logβ1 = 4.3±0.2, and logβ2 = 8.55±0.15. The standard potentials E 0 1/0 of AuNH3Cl0 and Au(NH3) 2 + species are equal to 0.90±0.02 and 0.64±0.01 V, respectively.  相似文献   

9.
An interesting 3d–4f complex [CeCo(HIDA)(IDA)2] n (I) (IDA = iminodiacetic acid) was synthesized under hydrothermal conditions and characterized by IR, TG, and single-crystal X-ray diffraction analysis. Complex I crystallizes in the monoclinic system, space group C2/c with a = 9.7033(19), b = 24.141(5), c = 8.5810(17) Å, β = 115.01(3)°, V = 1821.6(6) Å3, Z = 4, ρ c = 2.152 g/cm3, F(000) = 1148. Crystallographic data for I were collected at 293 K with a Rigaku R-axis Rapid IP diffractometer using graphite monochromatic MoK α radiation (λ = 0.71073 Å) and IP technique, GOOF = 0.994, the final R = 0.0245 and wR = 0.0763 (I > 2σ(I)). Complex I is a two-dimensional layer structure, in which the Ce(III) center is surrounded by ten oxygen atoms from different IDA ligands. The Co(II) center is six-coordinated by four oxygen atoms and two nitrogen atoms from two different IDA ligands. The carboxylic oxygen atom connected such units along the z axis to form a one-dimensional chain-like structure. The IDA ligand connects neighboring chains to form a two-dimensional layer structure.  相似文献   

10.
The title complexes, K[GaIII(Cydta)] · 2H2O(Cydta = trans-1,2-cyclohexanediaminetetraacetic acid) and K[GaIII(Pdta)] · 3H2O (Pdta = propylenediaminetetraacetic acid), were prepared, and their structures were studied by IR spectra, elemental analyses, NMR spectra, and single-crystal X-ray diffraction techniques. In the K[GaIII(Cydta)] · 2H2O complex, the Ga3+ is six-coordinated by the Cydta ligand yielding an octahedral conformation, and the complex crystallizes in the monoclinic system with the P21/c space group. The crystal data are as follows: a = 16.5039(19), b = 13.1499(16), c = 8.5204(10) Å, β = 101.650(2)°, V = 1811.0(4) Å3, Z = 4, ρ = 1.757 g/cm3, μ = 1.805 mm?1, F(000) = 984, R = 0.0291, and wR = 0.0698 for 3713 observed reflections with I ≥ 2σ(I). In the K[GaIII(Pdta)] · 3H2O complex, the Ga3+ is also six-coordinated by the Pdta ligand yielding an almost standard octahedral conformation, and the complex crystallizes in the orthorhombic system with P212121 space group. The crystal data are as follows: a = 8.8913(10), b = 11.6181(13), c = 17.0227(19) Å, V = 1758.4(3) Å3, Z = 4, ρ = 1.757 g/cm3, μ = 1.862 mm?1, F(000) = 952, R = 0.0288, and wR = 0.0724 for 3556 observed reflections with I ≥ 2σ(I).  相似文献   

11.
X-ray diffraction and thermal analyses, electron microscopy, and dynamic light scattering have been employed to study silver bromide nanoparticles obtained by the mechanochemical exchange reaction NaBr + AgNO3 + zNaNO3 = (z + 1)NaNO3 + AgBr in sodium nitrate matrix (diluent and side reaction product) at z = z1 = 8.06 and z = z2 = 4.31. AgBr nanoparticles have been obtained in the free form by dissolving the matrix in water, and their activity in the photodegradation of methylene blue dye has been studied.  相似文献   

12.
Cuprocobaltites RBaCuCoO5 + gd(R = Nd, Sm, Gd) were prepared. Their unit cell parameters were determined, and thermal expansion, electrical conductivity (σ), and Seebeck coefficient (S) were studied in air in the range 300–1100 K. The compounds have tetragonal structures (space group P4/mmm, Z = 1). Their unit cell parameters are a = 0.3906(2) nm, c= 0.7648(7) nm for NdBaCuCoO5.21; a = 0.3904(2) nm, c = 0.7609(6) nm for SmBaCuCoO5.06; and a = 0.3891(2), c = 0.7592(6) nm for GdBaCuCoO5.02. The RBaCuCoO5 + δ cuprocobaltites at room temperature are p-type semiconductors, whose electrical conductivity and linear thermal expansion coefficient (LTEC) increase with increasing R3+ ionic radius, whereas the Seebeck coefficient decreases. The LTECs of RBaCuCoO5 + δ phases in the range 500–575 K increase by a factor of 1.2–1.5 because of the elimination of weakly bound oxygen. S = f(T) curves for RBaCuCoO5 + δ (R = Nd, Sm, Gd) feature maxima at 510 K for R = Sm and 365 K for R = Gd, probably, due to the change in the spin state of cobalt cations in these phases.  相似文献   

13.
The phase diagram of the phloroglucinol (1,3,5-trioxybenzol)-dimethyl sulfoxide system is studied. The system is found to form a 1:1 molecular complex of phloroglucinol with dimethyl sulfoxide. The crystal structure of the complex is determined. The crystallographic data for C8H12O4S, M = 204.24, monoclinic system, P21/n space group, unit cell parameters: a = 9.0345(2)Å, b = 9.6895(3)Å, c = 10.9960(3)Å, β = 98.865(1)°, V = 951.09(4) Å3, Z = 4, d x = 1.426 g/cm3, R1 = 0.0283, T = 150 K. The molecules are joined in a supramolecular ensemble via O-H...O hydrogen bonds.  相似文献   

14.
The crystal structures of catechol (o-dihydroxybenzene) and its 2:1 complex with dimethylsulfoxide are determined at T = 150 K. Crystal data: C14H18O5S, M = 298.37, triclinic, space group P \(\bar 1\), unit cell parameters: a = 7.7285(13) Å, b = 9.9924(17) Å, c = 10.3188(18) Å, α = 89.963(4)°, β = 89.968(4)°, γ = 69.076(5)°, V = 744.3(2)Å3, Z = 2, D x = 1.331 g/cm3, R1 = 0.048; C6H6O2, M = 110.11, monoclinic, space group P21/n, a = 9.8206(6)Å, b = 5.5903(3)Å, c = 10.4439(6)Å, β = 114.952(2)°; V = 519.85(5) Å3, Z = 4, D x = 1.407 g/cm3, R1 = 0.0289. In the 2:1 complex the molecules are joined in a supramolecular ensemble by D-H...A hydrogen bonds (D = O, C; A = O, π); in catechol they are bonded only by O-H...O. The state diagram of the catechol-dimethylsulfoxide system is examined by DTA.  相似文献   

15.
A nickel(II) complex, [Ni(taetacn)](ClO4)2 ? H2O, where taetacn = 1,4,7-tris(2-aminoethyl)-1,4,7-triazacyclononane was synthesized. The crystal structure was determined by the single-crystal X-ray diffraction method at 293 K. The complex crystallizes in the orthorhombic space group Pna21 with a = 16.004(2) Å, b = 10.186(1) Å, c = 13.937(2) Å, V = 2271.9(5) Å3, Dx = 1.56 g cm?3, Dm = 1.59 g cm?3 (floatation method), and Z = 4. The R1 [I > 2σ(I)] and wR2 (all data) values are 0.0636 and 0.1672, respectively, for all 4845 independent reflections. The compound is composed of octahedral nickel(II) cation with three 2-aminoethyl pendant groups of taetacn, tetrahedral ClO 4 ? anion, and a water molecule of crystallization. Electronic spectra are consistent with the octahedral geometry. Temperature dependence of the magnetic susceptibility (4.5–300 K) can be interpreted considering the zero-field splitting of the nickel(II) ion (g = 2.14, D = 3.72 cm?1, and = 300 × 10?6 cm3 mol?1). Cyclic voltammetry in DMF showed quasi-reversible and irreversible oxidation waves (Epa = 0.54 V, Epc = 0.45 V; Epa = 1.16 V, Epc = 0.71 V vs. Ag/Ag+).  相似文献   

16.
Ytterbium alkali-metal chromites YbMCr2O5 (M = Li, Na, K, Cs) were synthesized by a ceramic procedure from the corresponding oxides and carbonates. Their crystal systems and unit cell parameters were determined by the homology method: for YbLiCr2O5, a = 10.34 Å, b = 10.62 Å, c = 15.05 Å, Z = 16, V o = 1653.74 Å3, ρX-ray = 5.85 g/cm3, ρpycn = 5.81 ± 0.03 g/cm3; for YbNaCr2O5, a = 10.30 Å, b = 10.56 Å, c = 16.46 Å, Z = 16, V o = 1790.32 Å3, ρX-ray = 5.64 g/cm3, ρpycn = 5.59 ± 0.07 g/cm3; for YbKCr2O5, a = 10.33 Å, b = 10.63 Å, c = 19.93 Å, Z = 16, V o = 2188.47 Å3, ρX-ray = 5.95 g/cm3, ρpycn = 5.91 ± 0.03 g/cm3; and for YbCsCr2O5, a = 10.34 Å, b = 10.63 Å, c = 18.43 Å, Z = 16, V o = 2025.72 Å3, ρX-ray = 5.19 g/cm3, ρpycn = 5.16 ± 0.05 g/cm3.  相似文献   

17.
The available experimental data were used to construct thermodynamic models of Nd-Ba-Cu-O system phases. The coordinates of the nonvariant points of this system were determined, and the phase diagram for the Nd1 + x Ba2 ? x Cu3O6 + z (x = 10?4) compound was calculated.  相似文献   

18.
The temperature dependence of heat capacity C° p = f(T) of crystalline arsenate Mg0.5Zr2(AsO4)3 was studied by precision adiabatic vacuum and differential scanning calorimetry in the temperature range 8?670 K. The standard thermodynamic functions C° p (T), H°(T)–H°(0), S°(T), and G°(T)–H°(0) of the arsenate for the range from Т → 0 to 670 K and the standard formation entropy at Т = 298.15 K were calculated from the obtained experimental data. Based on the low-temperature capacity data (30–50 K) the fractal dimension D of the arsenate was determined, and the topology of its structure was characterized. The results were compared with the thermodynamic data for the structurally related crystalline phosphates M0.5Zr2(PO4)3 (M = Mg, Ca, Sr, Ba, Ni) and arsenate NaZr2(AsO4)3.  相似文献   

19.
The temperature dependences of the heat capacities of 5-vinyltetrazole and poly-5-vinyltetrazole were measured by adiabatic vacuum calorimetry over the temperature range 6-(350–370) K with errors of ~0.2%. The results were used to calculate the thermodynamic functions of the compounds, C p ° , H °(T) - H °(0), S °(T), and G °(T) - H °(0), over the temperature range from T → 0 to 350–370 K. The energy of combustion of 5-vinyltetrazole and poly-5-vinyltetrazole was measured in an isothermic-shell static bomb calorimeter. The standard enthalpies of combustion Δ c H ° and thermodynamic characteristics of formation Δf H °, Δf S °, and Δf G ° at 298.15 K and p = 0.1 MPa were calculated. The results were used to determine the thermodynamic characteristics of polymerization of 5-vinyltetrazole over the temperature range from T → 0 to 350 K.  相似文献   

20.
The conditions for formation of individual isopolytungstates in solutions of the Sr(NO3)2-Na2WO4-HNO3-H2O system acidified to Z = ν(H+)/ν(WO 4 2? ) = 1.29 were studied. The conditions of formation of strontium paratungstate B, strontium hydroheptatungstate, and hydrogen strontium paratungstate were determined. An X-ray diffraction study of single crystals of Sr4.5H[W12O40(OH)2] · 30H2O was carried out. Selected crystallographic data for H63O72Sr4.50W12 are: M r = 3815.99, monoclinic, space group P21/c, a = 11.41270(10) Å, b = 23.7575(3) Å, c = 12.4392(2) Å, β = 110.476(2)°, V = 3159.64(7) Å3 at T = 293 K, Z = 2, ρ = 4.011 g/cm3, F000 = 3396, μ(MoK α) = 25.635 mm?1, ?14 ≤ h ≤ 14, ?30 ≤ k ≤ 30, ?16 ≤ l ≤ 16, R F = 0.0430, wR 2 = 0.1067 (R F = 0.0506, wR 2 = 0.1129), and S = 1.043.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号