首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary We present a general modeling framework for therobust optimization of linear network problems with uncertainty in the values of the right-hand side. In contrast to traditional approaches in mathematical programming, we use scenarios to characterize the uncertainty. Solutions are obtained for each scenario and these individual scenarios are aggregated to yield a nonanticipative or implementable policy that minimizes the regret of wrong decisions. A given solution is termed robust if it minimizes the sum over the scenarios of the weighted upper difference between the objective function value for the solution and the objective function value for the optimal solution for each scenario, while satisfying certain nonanticipativity constraints. This approach results in a huge model with a network submodel per scenario plus coupling constraints. Several decomposition approaches are considered, namely Dantzig-Wolfe decomposition, various types of Benders decomposition and different quadratic network approaches for approximating Augmented Lagrangian decomposition. We present computational results for these methods, including two implementation versions of the Lagrangian based method: a sequential implementation and a parallel implementation on a network of three workstations.  相似文献   

2.
We propose a scenario decomposition algorithm for stochastic 0–1 programs. The algorithm recovers an optimal solution by iteratively exploring and cutting-off candidate solutions obtained from solving scenario subproblems. The scheme is applicable to quite general problem structures and can be implemented in a distributed framework. Illustrative computational results on standard two-stage stochastic integer programming and nonlinear stochastic integer programming test problems are presented.  相似文献   

3.
A general framework for sensitivity analysis of discrete multi-criteria decision problems with or without uncertainty has been developed. The framework results in the need to solve very many mathematical programmes and hence is being implemented using parallel programming techniques. The method is illustrated with reference to a simple decision tree problem.  相似文献   

4.
A general decomposition framework for large convex optimization problems based on augmented Lagrangians is described. The approach is then applied to multistage stochastic programming problems in two different ways: by decomposing the problem into scenarios and by decomposing it into nodes corresponding to stages. Theoretical convergence properties of the two approaches are derived and a computational illustration is presented.  相似文献   

5.
Constraint programming offers modeling features and solution methods that are unavailable in mathematical programming but are often flexible and efficient for scheduling and other combinatorial problems. Yet mathematical programming is well suited to declarative modeling languages and is more efficient for some important problem classes. This raises this issue as to whether the two approaches can be combined in a declarative modeling framework. This paper proposes a general declarative modeling system in which the conditional structure of the constraints shows how to integrate any “checker” and any special-purpose “solver”. In particular this integrates constraint programming and optimization methods, because the checker can consist of constraint propagation methods, and the solver can be a linear or nonlinear programming routine.  相似文献   

6.
An outer-approximation algorithm is presented for solving mixed-integer nonlinear programming problems of a particular class. Linearity of the integer (or discrete) variables, and convexity of the nonlinear functions involving continuous variables are the main features in the underlying mathematical structure. Based on principles of decomposition, outer-approximation and relaxation, the proposed algorithm effectively exploits the structure of the problems, and consists of solving an alternating finite sequence of nonlinear programming subproblems and relaxed versions of a mixed-integer linear master program. Convergence and optimality properties of the algorithm are presented, as well as a general discussion on its implementation. Numerical results are reported for several example problems to illustrate the potential of the proposed algorithm for programs in the class addressed in this paper. Finally, a theoretical comparison with generalized Benders decomposition is presented on the lower bounds predicted by the relaxed master programs.  相似文献   

7.
We consider the general mathematical framework of Adomian's decomposition method (G. Adomian, “Stochastic Systems,” Academic Press, New York, 1983) for a large class of nonlinear operator equations. Picard's iterative scheme is considered for the same class for equations and compared with the decomposition method. The paper identifies carefully all substantial differences between the two methods and shows that various advantages exist for the decomposition method.  相似文献   

8.
The method of moving asymptotes (MMA) and its globally convergent extension SCP (sequential convex programming) are known to work well for certain problems arising in structural optimization. In this paper, the methods are extended for a general mathematical programming framework and a new scheme to update certain penalty parameters is defined, which leads to a considerable improvement in the performance. Properties of the approximation functions are outlined in detail. All convergence results of the traditional methods are preserved.  相似文献   

9.
Fundamental dynamic programming recursive equations are extended to the multicriteria framework. In particular, a more detailed procedure for a general recursive solution scheme for the multicriteria discrete mathematical programming problem is developed. Definitions of lower and upper bounds are offered for the multicriteria case and are incorporated into the recursive equations to aid problem solution by eliminating inefficient subpolicies. Computational results are reported for a set of 0–1 integer linear programming problems.This research was supported in part by CONACYT (Consejo Nacional de Ciencia y Technologia), Mexico City, Mexico.  相似文献   

10.
龚晶 《运筹学学报》2016,20(1):61-74
分组排序问题属于NP-难题, 单纯的数学规划模型或约束规划模型都无法在有效时间内解决相当规模的此类问题. 控制成本、缩短工期和减少任务延迟是排序问题的三个基本目标, 在实际工作中决策者通常需要兼顾三者, 并在 三者之间进行权衡. 多目标分组排序问题 的研究增强了排序问题的实际应用价值, 有利于帮助决策者处理复杂的多目标环境. 然而, 多目标的引入也增加了问题求解难度, 针对数学规划擅长寻找最优, 约束规划擅长排序的特点, 将两类方法整合起来, 提出一个基于Benders分解算法, 极大提高了此类问题的求解 效率.  相似文献   

11.
Silver and Moon (J Opl Res Soc 50(8) (1999) 789–796) address the problem of minimising total average cycle stock subject to two practical constraints. They provide a dynamic programming formulation for obtaining an optimal solution and propose a simple and efficient heuristic algorithm. Hsieh (J Opl Res Soc 52(4) (2001) 463–470) proposes a 0–1 linear programming approach to the problem and a simple heuristic based on the relaxed 0–1 programming formulation. We show in this paper that the formulation of Hsieh can be improved for solving very large size instances of this inventory problem. So the mathematical approach is interesting for several reasons: the definition of the model is simple, its implementation is immediate by using a mathematical programming language together with a mixed integer programming software and the performance of the approach is excellent. Computational experiments carried out on the set of realistic examples considered in the above references are reported. We also show that the general framework for modelling given by mixed integer programming allows the initial model to be extended in several interesting directions.  相似文献   

12.
We develop and investigate the performance of a hybrid solution framework for solving mixed-integer linear programming problems. Benders decomposition and a genetic algorithm are combined to develop a framework to compute feasible solutions. We decompose the problem into a master problem and a subproblem. A genetic algorithm along with a heuristic are used to obtain feasible solutions to the master problem, whereas the subproblem is solved to optimality using a linear programming solver. Over successive iterations the master problem is refined by adding cutting planes that are implied by the subproblem. We compare the performance of the approach against a standard Benders decomposition approach as well as against a stand-alone solver (Cplex) on MIPLIB test problems.  相似文献   

13.
This paper introduces the use of the proper generalized decomposition (PGD) method for the optical flow (OF) problem in a classical framework of Sobolev spaces, ie, optical flow methods including a robust energy for the data fidelity term together with a quadratic penalizer for the regularization term. A mathematical study of PGD methods is first presented for general regularization problems in the framework of (Hilbert) Sobolev spaces, and their convergence is then illustrated on OF computation. The convergence study is divided in two parts: (a) the weak convergence based on the Brézis-Lieb decomposition and (b) the strong convergence based on a growth result on the sequence of descent directions. A practical PGD-based OF implementation is then proposed and evaluated on freely available OF data sets. The proposed PGD-based OF approach outperforms the corresponding non-PGD implementation in terms of both accuracy and computation time for images containing a weak level of information, namely, low image resolution and/or low signal-to-noise ratio (SNR).  相似文献   

14.
This paper studies a two-phase decomposition approach to solving the personnel scheduling problem. The first phase creates a days-off-schedule, indicating working days and days off for each employee. The second phase assigns shifts to the working days in the days-off-schedule. This decomposition is motivated by the fact that personnel scheduling constraints are often divided into two categories: one specifies constraints on working days and days off, while the other specifies constraints on shift assignments. To assess the consequences of the decomposition approach, we apply it to public benchmark instances, and compare this to solving the personnel scheduling problem directly. In all steps we use mathematical programming. We also study the extension that includes night shifts in the first phase of the decomposition. We present a detailed results analysis, and analyze the effect of various instance parameters on the decompositions’ results. In general, we observe that the decompositions significantly reduce the computation time, but the quality, though often good, depends strongly on the instance at hand. Our analysis identifies which aspects in the instance can jeopardize the quality.  相似文献   

15.
This paper investigates large-scale multiobjective systems in the context of a general hierarchical generating method which considers the problem of how to find the set of all noninferior solutions by decomposition and coordination. A new, unified framework of the hierarchical generating method is developed by integrating the envelope analysis approach and the duality theory that is used in multiobjective programming. In this scheme, the vector-valued Lagrangian and the duality theorem provide the basis of a decomposition of the overall multiobjective system into several multiobjective subsystems, and the envelope analysis gives an efficient approach to deal with the coordination at a high level. The following decomposition-coordination schemes for different problems are developed: (i) a spatial decomposition and envelope coordination algorithm for large-scale multiobjective static systems; (ii) a temporal decomposition and envelope coordination algorithm for multiobjective dynamic systems; and (iii) a three-level structure algorithm for large-scale multiobjective dynamic systems.This work was supported by NSF Grant No. CEE-82-11606.  相似文献   

16.
We propose a modification of the proximal decomposition method investigated by Spingarn [30] and Mahey et al. [19] for minimizing a convex function on a subspace. For the method to be favorable from a computational point of view, particular importance is the introduction of approximations in the proximal step. First, we couple decomposition on the graph of the epsilon-subdifferential mapping and cutting plane approximations to get an algorithmic pattern that falls in the general framework of Rockafellar inexact proximal-point algorithms [26]. Recently, Solodov and Svaiter [27] proposed a new proximal point-like algorithm that uses improved error criteria and an enlargement of the maximal monotone operator defining the problem. We combine their idea with bundle mecanism to devise an inexact proximal decomposition method with error condition which is not hard to satisfy in practice. Then, we present some applications favorable to our development. First, we give a new regularized version of Benders decomposition method in convex programming called the proximal convex Benders decomposition algorithm. Second, we derive a new algorithm for nonlinear multicommodity flow problems among which the message routing problem in telecommunications data networks.  相似文献   

17.
设A∈Rrm×n,本文讨论了矩阵A在等价分解下的13类Moore-Penrose型广义逆的通式.由于等价分解是矩阵论及其应用中的一种重要的分解,并且本文所给出的通式只需通过矩阵的初等变换和乘法运算就能得到,故这些通式在相关的理论研究和实际应用中是有一定价值的.  相似文献   

18.
An interactive approach to the formulation, modeling, analysis, and solution of discrete deterministic dynamic programming problems is presented. The approach utilizes APL both as the mathematical and the programming language. The interactive capabilities of APL and the simple one-to-one correspondence between the programming and the mathematical language provide an extremely convenient environment for dynamic programming investigations in general and for teaching/learning purposes in particular. The approach is illustrated by a simple model and a numerical example.  相似文献   

19.
In this paper, we study recourse-based stochastic nonlinear programs and make two sets of contributions. The first set assumes general probability spaces and provides a deeper understanding of feasibility and recourse in stochastic nonlinear programs. A sufficient condition, for equality between the sets of feasible first-stage decisions arising from two different interpretations of almost sure feasibility, is provided. This condition is an extension to nonlinear settings of the “W-condition,” first suggested by Walkup and Wets (SIAM J. Appl. Math. 15:1299–1314, 1967). Notions of complete and relatively-complete recourse for nonlinear stochastic programs are defined and simple sufficient conditions for these to hold are given. Implications of these results on the L-shaped method are discussed. Our second set of contributions lies in the construction of a scalable, superlinearly convergent method for solving this class of problems, under the setting of a finite sample-space. We present a novel hybrid algorithm that combines sequential quadratic programming (SQP) and Benders decomposition. In this framework, the resulting quadratic programming approximations while arbitrarily large, are observed to be two-period stochastic quadratic programs (QPs) and are solved through two variants of Benders decomposition. The first is based on an inexact-cut L-shaped method for stochastic quadratic programming while the second is a quadratic extension to a trust-region method suggested by Linderoth and Wright (Comput. Optim. Appl. 24:207–250, 2003). Obtaining Lagrange multiplier estimates in this framework poses a unique challenge and are shown to be cheaply obtainable through the solution of a single low-dimensional QP. Globalization of the method is achieved through a parallelizable linesearch procedure. Finally, the efficiency and scalability of the algorithm are demonstrated on a set of stochastic nonlinear programming test problems.  相似文献   

20.
《Optimization》2012,61(3-4):249-266
The paper offers an abstract structure called environment (of mathematical programming) in which a pair of dual programs is settled symmetrically. Given an environment, the concepts of an optimization program, its dual and the associated Lagrangean are formalized and studied. The usual asymmetries in certain types of mathematical programming are due to selection of asymmetric environments. Common types of programming like: linear, nonlinear, convex, integer etc. are reviewed in the proposed framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号