首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present a method, based on the Chebyshev third-order algorithm and accelerated by a Shamanskii-like process, for solving nonlinear systems of equations. We show that this new method has a quintic convergence order. We will also focus on efficiency of high-order methods and more precisely on our new Chebyshev–Shamanskii method. We also identify the optimal use of the same Jacobian in the Shamanskii process applied to the Chebyshev method. Some numerical illustrations will confirm our theoretical analysis.  相似文献   

2.
The four vector extrapolation methods, minimal polynomial extrapolation, reduced rank extrapolation, modified minimal polynomial extrapolation and the topological epsilon algorithm, when applied to linearly generated vector sequences are Krylov subspace methods and it is known that they are equivalent to some well-known conjugate gradient type methods. However, the vector -algorithm is an extrapolation method, older than the four extrapolation methods above, and no similar results are known for it. In this paper, a determinantal formula for the vector -algorithm is given. Then it is shown that, when applied to a linearly generated vector sequence, the algorithm is also a Krylov subspace method and for a class of matrices the method is equivalent to a preconditioned Lanczos method. A new determinantal formula for the CGS is given, and an algebraic comparison between the vector -algorithm for linear systems and CGS is also given.  相似文献   

3.
The well-known Levenberg–Marquardt method is used extensively to solve systems of nonlinear equations. An extension of the Levenberg–Marquardt method based on new nonmonotone technique is described. To decrease the total number of iterations, this method allows the sequence of objective function values to be nonmonotone, especially in the case where the objective function is ill-conditioned. Moreover, the parameter of Levenberg–Marquardt is produced according to the new nonmonotone strategy to use the advantages of the faster convergence of the Gauss–Newton method whenever iterates are near the optimizer, and the robustness of the steepest descent method in the case in which iterates are far away from the optimizer. The global and quadratic convergence of the proposed method is established. The results of numerical experiments are reported.  相似文献   

4.
A new analytical method called He’s variational iteration method (VIM) is introduced to be applied to solve nonlinear Benjamin-Bona-Mahony-Burgers (BBMB) equations and free vibration of a nonlinear system having combined linear and nonlinear springs in series in this article. In this method, general Lagrange multipliers are introduced to construct correction functionals for the problems. The multipliers can be identified optimally via the variational theory. The results are compared with the results of the homotopy analysis method and also with the exact solution. He’s Variational iteration method in this problem functions so better than the homotopy analysis method and exact solutions one of them in per section.  相似文献   

5.
In this paper, vector variational inequalities (VVI) with matrix inequality constraints are investigated by using the image space analysis. Linear separation for VVI with matrix inequality constraints is characterized by using the saddle-point conditions of the Lagrangian function. Lagrangian-type necessary and sufficient optimality conditions for VVI with matrix inequality constraints are derived by utilizing the separation theorem. Gap functions for VVI with matrix inequality constraints and weak sharp minimum property for the solutions set of VVI with matrix inequality constraints are also considered. The results obtained above are applied to investigate the Lagrangian-type necessary and sufficient optimality conditions for vector linear semidefinite programming problems as well as VVI with convex quadratic inequality constraints.  相似文献   

6.
This article deals with the weak and strong unique continuation principle for fractional Schrödinger equations with scaling-critical and rough potentials via Carleman estimates. Our methods extend to “variable coefficient” versions of fractional Schrödinger equations and operators on non-flat domains.  相似文献   

7.
In this paper,we establish a novel unique continuation property for two-dimensional anisotropic elasticity systems with partial information.More precisely,given a homogeneous elasticity system in a connected open bounded domain,we investigate the unique continuation by assuming only the vanishing of one component of the solution in a subdomain.Using the corresponding Riemann function,we prove that the solution vanishes in the whole domain provided that the other component vanishes at one point up to its second derivatives.Further,we construct several examples showing the possibility of further reducing the additional information of the other component.This result possesses remarkable significance in both theoretical and practical aspects because the required data are almost halved for the unique determination of the whole solution.  相似文献   

8.
9.
Let Γ be a portion of a C 1,α boundary of an n-dimensional domain D. Let u be a solution to a second order parabolic equation in D × (–T, T) and assume that u = 0 on Γ × (–T, T), 0 ∈ Γ. We prove that u satis.es a three cylinder inequality near Γ × (–T, T) . As a consequence of the previous result we prove that if u (x, t) = O (|x|k) for every t ∈ (–T, T) and every k ∈ ℕ, then u is identically equal to zero. This work is partially supported by MURST, Grant No. MM01111258  相似文献   

10.
This paper considers fourth-order differential equations with four-point boundary conditions and deviating arguments. We establish sufficient conditions under which such boundary-value problems have positive solutions. We discuss such problems in the cases when the deviating arguments are delayed or advanced. In order to obtain the existence of at least three positive solutions, we use a fixed-point theorem due to Avery and Peterson. To the authors’ knowledge, this is a first paper where the existence of positive solutions of boundary-value problems for fourth-order differential equations with deviating arguments is discussed.  相似文献   

11.
Under the Lipschitz assumption and square integrable assumption on g, the author proves that Jensen's inequality holds for backward stochastic differential equations with generator g if and only if g is independent of y, g(t, 0) = 0 and g is super homogeneous with respect to z. This result generalizes the known results on Jensen's inequality for g-expectation in [4, 7-9].  相似文献   

12.
We provide sufficient conditions for the existence of periodic orbits of some systems of delay differential equations with a unique delay. We extend Kaplan-Yorke's method for finding periodic orbits from a delay differential equation with several delays to a system of delay differential equations with a unique delay.  相似文献   

13.
For a certain kind of multivariate Padéapproximation problems, we establish in this paper some results about the solvability and uniqueness of its solution. We alsogive the necessary and sufficient conditions for the continuity of Padé approximation operator. The application of such approximations in finding solutions of systems of nonlinear equations is considered, and some numerical examples are given, in which it is shown that the Padé methods are more effective than the Newton methods in some cases.  相似文献   

14.
We present new convergence properties of partially augmented Lagrangian methods for mathematical programs with complementarity constraints (MPCC). Four modified partially augmented Lagrangian methods for MPCC based on different algorithmic strategies are proposed and analyzed. We show that the convergence of the proposed methods to a B-stationary point of MPCC can be ensured without requiring the boundedness of the multipliers.  相似文献   

15.
This article describes a bounding approximation scheme for convex multistage stochastic programs (MSP) that constrain the conditional expectation of some decision-dependent random variables. Expected value constraints of this type are useful for modelling a decision maker’s risk preferences, but they may also arise as artifacts of stage-aggregation. We develop two finite-dimensional approximate problems that provide bounds on the (infinite-dimensional) original problem, and we show that the gap between the bounds can be made smaller than any prescribed tolerance. Moreover, the solutions of the approximate MSPs give rise to a feasible policy for the original MSP, and this policy’s optimality gap is shown to be smaller than the difference of the bounds. The considered problem class comprises models with integrated chance constraints and conditional value-at-risk constraints. No relatively complete recourse is assumed.  相似文献   

16.
In an optimization problem with equality constraints the optimal value function divides the state space into two parts. At a point where the objective function is less than the optimal value, a good iteration must increase the value of the objective function. Thus, a good iteration must be a balance between increasing or decreasing the objective function and decreasing a constraint violation function. This implies that at a point where the constraint violation function is large, we should construct noninferior solutions relative to points in a local search region. By definition, an accessory function is a linear combination of the objective function and a constraint violation function. We show that a way to construct an acceptable iteration, at a point where the constraint violation function is large, is to minimize an accessory function. We develop a two-phases method. In Phase I some constraints may not be approximately satisfied or the current point is not close to the solution. Iterations are generated by minimizing an accessory function. Once all the constraints are approximately satisfied, the initial values of the Lagrange multipliers are defined. A test with a merit function is used to determine whether or not the current point and the Lagrange multipliers are both close to the optimal solution. If not, Phase I is continued. If otherwise, Phase II is activated and the Newton method is used to compute the optimal solution and fast convergence is achieved.  相似文献   

17.
Skrypnik  I. I. 《Potential Analysis》2019,50(4):521-539
Potential Analysis - In this article we study nonnegative solutions of quasilinear equation model of which is $$-triangle_{p} u+V(x) f(u)= h(x)|nabla u|^{p-1}+g(x), ,,,, p>1.$$ Under...  相似文献   

18.
We develop a branch-and-bound algorithm to solve a nonlinear class of 0–1 knapsack problems. The objective function is a product of m2 affine functions, whose variables are mutually exclusive. The branching procedure in the proposed algorithm is the usual one, but the bounding procedure exploits the special structure of the problem and is implemented through two stages: the first stage is based on linear programming relaxation; the second stage is based on Lagrangian relaxation. Computational results indicate that the algorithm is promising.  相似文献   

19.
A new approach is proposed for finding all real solutions of systems of nonlinear equations with bound constraints. The zero finding problem is converted to a global optimization problem whose global minima with zero objective value, if any, correspond to all solutions of the original problem. A branch-and-bound algorithm is used with McCormick’s nonsmooth convex relaxations to generate lower bounds. An inclusion relation between the solution set of the relaxed problem and that of the original nonconvex problem is established which motivates a method to generate automatically, starting points for a local Newton-type method. A damped-Newton method with natural level functions employing the restrictive monotonicity test is employed to find solutions robustly and rapidly. Due to the special structure of the objective function, the solution of the convex lower bounding problem yields a nonsmooth root exclusion test which is found to perform better than earlier interval-analysis based exclusion tests. Both the componentwise Krawczyk operator and interval-Newton operator with Gauss-Seidel based root inclusion and exclusion tests are also embedded in the proposed algorithm to refine the variable bounds for efficient fathoming of the search space. The performance of the algorithm on a variety of test problems from the literature is presented, and for most of them, the first solution is found at the first iteration of the algorithm due to the good starting point generation.  相似文献   

20.
The Levitin–Polyak well-posedness for a constrained problem guarantees that, for an approximating solution sequence, there is a subsequence which converges to a solution of the problem. In this article, we introduce several types of (generalized) Levitin–Polyak well-posednesses for a vector variational inequality problem with both abstract and functional constraints. Various criteria and characterizations for these types of well-posednesses are given. Relations among these types of well-posednesses are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号