首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Peptoids are oligomeric N-substituted glycines with potential as biologically relevant compounds. Helical peptoids provide an attractive fold for the generation of protein-protein interaction inhibitors. The generation of helical peptoid folds in organic and aqueous media has been limited to strict design rules, as peptoid-folding is mainly directed via the steric direction of alpha-chiral side-chains. Here a new methodology is presented to induce helical folds in peptoids with the aid of side chain to side chain cyclization. Cyclic peptoids were generated via solid-phase synthesis and their folding was studied. The cyclization induces significant helicity in peptoids in organic media, aids the folding in aqueous media, and requires the incorporation of only relatively few chiral aromatic side chains.  相似文献   

2.
Peptoids, or oligomers of N-substituted glycine, are an important class of non-native polymers whose close structural similarity to natural alpha-peptides and ease of synthesis offer significant advantages for the study of biomolecular interactions and the development of biomimetics. Peptoids that are N-substituted with alpha-chiral aromatic side chains have been shown to adopt either helical or "threaded loop" conformations, depending upon solvent and oligomer length. Elucidation of the factors that impact peptoid conformation is essential for the development of general rules for the design of peptoids with discrete and novel structures. Here, we report the first study of the effects of pentafluoroaromatic functionality on the conformational profiles of peptoids. This work was enabled by the synthesis of a new, alpha-chiral amine building block, (S)-1-(pentafluorophenyl)ethylamine (S-2), which was found to be highly compatible with peptoid synthesis (delivering (S)-N-(1-(pentafluorophenyl)ethyl)glycine oligomers). The incorporation of this fluorinated monomer unit allowed us to probe both the potential for pi-stacking interactions along the faces of peptoid helices and the role of side chain electrostatics in peptoid folding. A series of homo- and heteropeptoids derived from S-2 and non-fluorinated, alpha-chiral aromatic amide side chains were synthesized and characterized by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy. Enhancement of pi-stacking by quadrupolar interactions did not appear to play a significant role in stabilizing the conformations of heteropeptoids with alternating fluorinated and non-fluorinated side chains. However, incorporation of (S)-N-(1-(pentafluorophenyl)ethyl)glycine monomers enforced helicity in peptoids that typically exhibit threaded loop conformations. Moreover, we found that the incorporation of a single (S)-N-(1-(pentafluorophenyl)ethyl)glycine monomer could be used to selectively promote looped or helical structure in this important peptoid class by tuning the electronics of nearby heteroatoms. The strategic installation of this monomer unit represents a new approach for the manipulation of canonical peptoid structure and the construction of novel peptoid architectures.  相似文献   

3.
DNA-encoded combinatorial synthesis provides efficient and dense coverage of chemical space around privileged molecular structures. The indole side chain of tryptophan plays a prominent role in key, or “hot spot”, regions of protein–protein interactions. A DNA-encoded combinatorial peptoid library was designed based on the Ugi four-component reaction by employing tryptophan-mimetic indole side chains to probe the surface of target proteins. Several peptoids were synthesized on a chemically stable hexathymidine adapter oligonucleotide “hexT”, encoded by DNA sequences, and substituted by azide-alkyne cycloaddition to yield a library of 8112 molecules. Selection experiments for the tumor-relevant proteins MDM2 and TEAD4 yielded MDM2 binders and a novel class of TEAD-YAP interaction inhibitors that perturbed the expression of a gene under the control of these Hippo pathway effectors.  相似文献   

4.
Peptoids, or oligomers of N-substituted glycines, are a class of foldamers that have shown extraordinary functional potential since their inception nearly two decades ago. However, the generation of well-defined peptoid secondary structures remains a difficult task. This challenge is due, in part, to the lack of a thorough understanding of peptoid sequence-structure relationships and, consequently, an incomplete understanding of the peptoid folding process. We seek to delineate sequence-structure relationships through the systematic study of noncovalent interactions in peptoids and the design of novel amide side chains capable of such interactions. Herein, we report the synthesis and detailed structural analysis of a series of (S)-N-(1-naphthylethyl)glycine (Ns1npe) peptoid homo-oligomers by X-ray crystallography, NMR spectroscopy, and circular dichroism (CD) spectroscopy. Four of these peptoids were found to adopt well-defined structures in the solid state, with dihedral angles similar to those observed in polyproline type I (PPI) peptide helices and in peptoids with α-chiral side chains. The X-ray crystal structure of a representative Ns1npe tetramer revealed an all cis-amide helix, with approximately three residues per turn, and a helical pitch of approximately 6.0 ?. 2D-NMR analysis of the length-dependent Ns1npe series showed that these peptoids have very high overall backbone amide K(cis/trans) values in acetonitrile, indicative of conformationally homogeneous structures in solution. Additionally, CD spectroscopy studies of the Ns1npe homo-oligomers in acetonitrile and methanol revealed a striking length-dependent increase in ellipticity per amide. These Ns1npe helices represent the most robust peptoid helices to be reported, and the incorporation of (S)-N-(1-naphthylethyl)glycines provides a new approach for the generation of stable helical structure in this important class of foldamers.  相似文献   

5.
The design of inhibitors of intracellular protein–protein interactions (PPIs) remains a challenge in chemical biology and drug discovery. We propose a cyclized helix‐loop‐helix (cHLH) peptide as a scaffold for generating cell‐permeable PPI inhibitors through bifunctional grafting: epitope grafting to provide binding activity, and arginine grafting to endow cell‐permeability. To inhibit p53–HDM2 interactions, the p53 epitope was grafted onto the C‐terminal helix and six Arg residues were grafted onto another helix. The designed peptide cHLHp53‐R showed high inhibitory activity for this interaction, and computational analysis suggested a binding mode for HDM2. Confocal microscopy of cells treated with fluorescently labeled cHLHp53‐R revealed cell membrane penetration and cytosolic localization. The peptide inhibited the growth of HCT116 and LnCap cancer cells. This strategy of bifunctional grafting onto a well‐structured peptide scaffold could facilitate the generation of inhibitors for intracellular PPIs.  相似文献   

6.
The achiral backbone of oligo-N-substituted glycines or "peptoids" lacks hydrogen-bond donors, effectively preventing formation of the regular, intrachain hydrogen bonds that stabilize peptide alpha-helical structures. Yet, when peptoids are N-substituted with alpha-chiral, aromatic side chains, oligomers with as few as five residues form stable, chiral, polyproline-like helices in either organic or aqueous solution. The adoption of chiral secondary structure in peptoid oligomers is primarily driven by the steric influence of these bulky, chiral side chains. Interestingly, peptoid helices of this class exhibit intense circular dichroism (CD) spectra that closely resemble those of peptide alpha-helices. Here, we have taken advantage of this distinctive spectroscopic signature to investigate sequence-related factors that favor and disfavor stable formation of peptoid helices of this class, through a comparison of more than 30 different heterooligomers with mixed chiral and achiral side chains. For this family of peptoids, we observe that a composition of at least 50% alpha-chiral, aromatic residues is necessary for the formation of stable helical structure in hexameric sequences. Moreover, both CD and 1H-13C HSQC NMR studies reveal that these short peptoid helices are stabilized by the placement of an alpha-chiral, aromatic residue on the carboxy terminus. Additional stabilization can be provided by the presence of an "aromatic face" on the helix, which can be patterned by positioning aromatic residues with three-fold periodicity in the sequence. Extending heterooligomer chain length beyond 12-15 residues minimizes the impact of the placement, but not the percentage, of alpha-chiral aromatic side chains on overall helical stability. In light of these new data, we discuss implications for the design of helical, biomimetic peptoids based on this structural motif.  相似文献   

7.
Among the families of peptidomimetic foldamers under development as novel biomaterials and therapeutics, poly-N-substituted glycines (peptoids) with alpha-chiral side chains are of particular interest for their ability to adopt stable, helical secondary structure in organic and aqueous solution. Here, we show that a peptoid 22-mer with a biomimetic sequence of side chains and an amphipathic, helical secondary structure acts as an excellent mimic of surfactant protein C (SP-C), a small protein that plays an important role in surfactant replacement therapy for the treatment of neonatal respiratory distress syndrome. When integrated into a lipid film, the helical peptoid SP mimic captures the essential surface-active behaviors of the natural protein. This work provides an example of how an abiological oligomer that closely mimics both the hydrophobic/polar sequence patterning and the fold of a natural protein can also mimic its biophysical function.  相似文献   

8.
Combs DJ  Lokey RS 《Tetrahedron letters》2007,48(15):2679-2682
Peptoids (N-substituted polyglycines) represent a class of bioinspired oligomers that have unique physical and structural properties. Here, we report the construction of ‘extended peptoids’ based on aromatic building blocks, in which the N-alkylaminoacetyl group of the peptoid backbone has been replaced by an N-alkylaminomethylbenzoyl spacer. Both meta- and para-bromomethylbenzoic acids were synthesized, providing access to a new class of peptoids. Further, inclusion of hydrophilic side chains confers water solubility to these compounds, showing that, like simple peptoids, extended peptoids add an extra dimension to synthetic poly-amide oligomers with potential application in a variety of biological contexts.  相似文献   

9.
A study on the preparation of N-alkylglycines (peptoids) that contain tertiary amino residues on the N-alkyl side chains is reported. The appropriate combination of the submonomer strategy with N-alkylglycine monomer couplings depending upon the structure of the N-alkyl side chain that must be incorporated into the peptoid is determinant for the efficiency of the synthetic pathway. The application of this strategy to the preparation of SICHI, an N-alkyglycine trimer containing tertiary amino residues in the three N-alkyl branches, and that has been identified as a potent Semaphorin 3A inhibitor, is presented.  相似文献   

10.
The understanding of structure–function relationships within synthetic biomimetic systems is a fundamental challenge in chemistry. Herein we report the direct correlation between the structure of short peptoid ligands—N-substituted glycine oligomers incorporating 2,2′-bipyridine groups—varied in their monomer sequence, and the photoluminescence of RuII centers coordinated by these ligands. Based on circular dichroism and fluorescence spectroscopy we demonstrate that while helical peptoids do not affect the fluorescence of the embedded RuII chromophore, unstructured peptoids lead to its significant decay. Transmittance electron microscopy (TEM) revealed significant differences in the arrangements of metal-bound helical versus unstructured peptoids, suggesting that only the latter can have through-space interactions with the ruthenium dye leading to its quenching. High-resolution TEM enabled the remarkable direct imaging of singular ruthenium-bound peptoids and bundles, supporting our explanation for structure-depended quenching. Moreover, this correlation allowed us to fine-tune the luminescence properties of the complexes simply by modifying the sequence of their peptoid ligands. Finally, we also describe the chiral properties of these Ru–peptoids and demonstrate that remote chiral induction from the peptoids backbone to the ruthenium center is only possible when the peptoids are both chiral and helical.  相似文献   

11.
Substantial progress has been made in the synthesis and characterization of various oligomeric molecules capable of autonomous folding to well-defined, repetitive secondary structures. It is now possible to investigate sequence-structure relationships and the driving forces for folding in these systems. Here, we present detailed analysis by X-ray crystallography, NMR, and circular dichroism (CD) of the helical structures formed by N-substituted glycine (or "peptoid") oligomers with alpha-chiral, aliphatic side chains. The X-ray crystal structure of a N-(1-cyclohexylethyl)glycine pentamer, the first reported for any peptoid, shows a helix with cis-amide bonds, approximately 3 residues per turn, and a pitch of approximately 6.7 A. The backbone dihedral angles of this pentamer are similar to those of a polyproline type I peptide helix, in agreement with prior modeling predictions. This crystal structure likely represents the major solution conformers, since the CD spectra of analogous peptoid hexamers, dodecamers, and pentadecamers, composed entirely of either (S)-N-(1-cyclohexylethyl)glycine or (S)-N-(sec-butyl)glycine monomers, also have features similar to those of the polyproline type I helix. Furthermore, this crystal structure is similar to a solution NMR structure previously described for a peptoid pentamer comprised of chiral, aromatic side chains, which suggests that peptoids containing either aromatic or aliphatic alpha-chiral side chains adopt fundamentally similar helical structures in solution, despite distinct CD spectra. The elucidation of detailed structural information for peptoid helices with alpha-chiral aliphatic side chains will facilitate the mimicry of biomolecules, such as transmembrane protein domains, in a distinctly stable form.  相似文献   

12.
Five nonpeptide, small-molecule inhibitors of the human MDM2-p53 interaction are presented, and each inhibitor represents a new scaffold. The most potent compound exhibited a Ki of 110 +/- 30 nM. These compounds were identified using our multiple protein structure (MPS) method which incorporates protein flexibility into a receptor-based pharmacophore model that identifies appropriate hotspots of binding. Docking the inhibitors with an induced-fit docking protocol suggested that the inhibitors mimicked the three critical binding residues of p53 (Phe19, Trp23, and Leu26). Docking also predicted a new orientation of the scaffolds that more fully fills the binding cleft, enabling the inhibitors to take advantage of additional hydrogen-bonding possibilities not explored by other small molecule inhibitors. One inhibitor in particular was proposed to probe the hydrophobic core of the protein by taking advantage of the flexibility of the binding cleft floor. These results show that the MPS technique is a promising advance for structure-based drug discovery and that the method can truly explore broad chemical space efficiently in the quest to discover potent, small-molecule inhibitors of protein-protein interactions. Our MPS technique is one of very few ensemble-based techniques to be proven through experimental verification of the discovery of new inhibitors.  相似文献   

13.
We describe a general method for the mimicry of one face of an alpha-helix based on a terphenyl scaffold that spatially projects functionality in a manner similar to that of two turns of an alpha-helix. The synthetic scaffold reduces the flexibility and molecular weight of the mimicked protein secondary structure. We have applied this design to the development of antagonists of the alpha-helix binding protein Bcl-x(L). Using a sequential synthetic strategy, we have prepared a library of terphenyl derivatives to mimic the helical region of the Bak BH3 domain that binds Bcl-x(L). Fluorescence polarization assays were carried out to evaluate the ability of terphenyl derivatives to displace the Bcl-x(L)-bound Bak peptide. Terphenyl 14 exhibited good in vitro affinity with a K(i) value of 0.114 muM. These terphenyl derivatives were more selective at disrupting the Bcl-x(L)/Bak over the HDM2/p53 interaction, which involves binding of the N-terminal alpha-helix of p53 to HDM2. Structural studies using NMR spectroscopy and computer-aided docking simulations suggested that the helix binding area on the surface of Bcl-x(L) is the target for the synthetic ligands. Treatment of human embryonic kidney 293 (HEK293) cells with terphenyl derivatives resulted in the disruption of the binding of Bcl-x(L) to Bax in intact cells.  相似文献   

14.
Oligomeric N-substituted glycines or "peptoids" with alpha-chiral, aromatic side chains can adopt stable helices in organic or aqueous solution, despite their lack of backbone chirality and their inability to form intrachain hydrogen bonds. Helical ordering appears to be stabilized by avoidance of steric clash as well as by electrostatic repulsion between backbone carbonyls and pi clouds of aromatic rings in the side chains. Interestingly, these peptoid helices exhibit intense circular dichroism (CD) spectra that closely resemble those of peptide alpha-helices. Here, we have utilized CD to systematically study the effects of oligomer length, concentration, and temperature on the chiral secondary structure of organosoluble peptoid homooligomers ranging from 3 to 20 (R)-N-(1-phenylethyl)glycine (Nrpe) monomers in length. We find that a striking evolution in CD spectral features occurs for Nrpe oligomers between 4 and 12 residues in length, which we attribute to a chain length-dependent population of alternate structured conformers having cis versus trans amide bonds. No significant changes are observed in CD spectra of oligomers between 13 and 20 monomers in length, suggesting a minimal chain length of about 13 residues for the formation of stable poly(Nrpe) helices. Moreover, no dependence of circular dichroism on concentration is observed for an Nrpe hexamer, providing evidence that these helices remain monomeric in solution. In light of these new data, we discuss chain length-related factors that stabilize organosoluble peptoid helices of this class, which are important for the design of helical, biomimetic peptoids sharing this structural motif.  相似文献   

15.
We describe a novel photolithographic approach to the synthesis of peptoids (oligo-N-substituted glycines). This strategy enables the construction of a spatially addressable peptoid microarray, thus providing a potentially powerful tool for the discovery of protein ligands.  相似文献   

16.
The introduction of chirality into peptoids is an important strategy to determine a discrete and robust secondary structure. However, the lack of an efficient strategy for the synthesis of structurally diverse chiral peptoids has hampered the studies. Herein, we report the efficient synthesis of a wide variety of N-aryl peptoid atropisomers in good yields with excellent enantioselectivities (up to 99% yield and 99% ee) by palladium-catalyzed asymmetric C–H alkynylation. The inexpensive and commercially available l-pyroglutamic acid was used as an efficient chiral ligand. The exceptional compatibility of the C–H alkynylation with various peptoid oligomers renders this procedure valuable for peptoid modifications. Computational studies suggested that the amino acid ligand distortion controls the enantioselectivity in the Pd/l-pGlu-catalyzed C–H bond activation step.

The introduction of chirality into peptoids is an important strategy to determine a discrete and robust secondary structure.  相似文献   

17.
A series of peptoid oligomers were designed as helical, cationic, and facially amphipathic mimics of the magainin-2 amide antibacterial peptide. We used circular dichroism spectroscopy to determine the conformation of these peptoids in aqueous buffer and in the presence of bacterial membrane-mimetic lipid vesicles, composed of a 7:3 mol ratio of POPE:POPG. We found that certain peptoids, which displayed characteristically helical CD in buffer and lipid vesicles, exhibit selective (nonhemolytic) and potent antibacterial activity against both Gram-positive and Gram-negative bacteria. In contrast, peptoids that exhibit weak CD, reminiscent of that of a peptide random coil, were ineffective antibiotics. In a manner similar to the natural magainin peptides, we find a correlation between peptoid lipophilicity and hemolytic propensity. We observe that a minimum length of approximately 12 peptoid residues may be required for antibacterial activity. We also see evidence that a helix length between 24 and 34 A may provide optimal antibacterial efficacy. These results provide the first example of a water-soluble, structured, bioactive peptoid.  相似文献   

18.
The construction of synthetic protein mimics is a central goal in chemistry. A known approach for achieving this goal is the self-assembly of synthetic biomimetic sequences into supramolecular structures. Obtaining different 3D structures via a simple sequence modification, however, is still challenging. Herein we present the design and synthesis of biomimetic architectures, via the self-assembly of distinct copper-peptoid duplexes. We demonstrate that changing only one non-coordinating side-chain within the peptoids—sequence-specific N-substituted glycine oligomers—leads to different supramolecular structures. Four peptoid trimers incorporating 2,2’-bipyridine and pyridine ligands, and a non-coordinating but rather a structure-directed bulky group were synthesized, and their solutions were treated with Cu2+ in a 1:1 ratio. Single-crystal X-ray analysis of the products revealed the self-assembly of each peptoid into a metallopeptoid duplex, followed by the self-assembly of multiple duplexes and their packing into a three-dimensional supramolecular architecture via hydrogen bonding and π–π interactions. Tuning the non-coordinating side-chain enables to regulate both the final structure being either a tightly packed helical rod or a nano-channel, and the pore width of the nano-channels. Importantly, all the metallopeptoids structures are stable in aqueous solution as verified by cryo-TEM measurements and supported by UV/Vis and EPR spectroscopies and by ESI-MS analysis. Thus, we could also demonstrate the selective recognition abilities of the nano-channels towards glycerol.  相似文献   

19.
The peptoid backbone derives from peptides by shifting the side chains from the Cα carbons to the adjacent amide nitrogens. This principle has been applied to β-peptides to create the β-peptoids and recently novel peptoid-type architectures were reported, such as the α,β-peptoids, arylopeptoids and N-hydroxy/alcoxy-peptoids. This account provides an overview of peptoids and related architectures both from the point of view of their synthesis as well as their conformational preferences. The most recent advances for the control of the cis/trans geometry of N,N-disubstituted peptoid amides are also outlined.  相似文献   

20.
Recent studies on amino acid occurrence in protein binding sites suggest that only a reduced number of residues are responsible for most interaction energy in protein-protein and protein-ligand interactions. Above all, tryptophan (Trp) seems to be the most frequent residue in protein's hot spots. Here we report a novel, efficient, and cost-effective method to selectively incorporate specific isotope labels into the side chains of Trp residues in recombinant proteins. We show that the method proposed allows selective NMR observation of Trp side chains that enables studies of ligand binding, protein-protein interactions, hydrogen binding, protein folding, and side chain dynamics. Examples with the protein BIR3 will be given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号