首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Douglas-fir sapwood and heartwood were impregnated with SO2 and steam exploded at three severity levels, and the cellulose-rich, water-insoluble component was enzymatically hydrolyzed. The high-severity conditions resulted in near complete solubilization and some degradation of hemicelluloses and a significant improvement in the efficiency of enzymatic digestibility of the cell ulose component. At lower severity, some of the hemicellulose remained un hydrolyzed, and the cellulose present in the pretreated solids was not readily hydrolyzed. The medium-severity pretreatment conditions proved to be a good compromise because they improved the enzymatic hydrolyzability of the solids and resulted in the recovery of the majority of hemicellulose in a monomeric form within the water-soluble stream. Sapwood-derived wood chips exhibited a higher susceptibility to both pretreatment and hydrolysis and, on steam explosion, formed smaller particles as compared to heartwood-derived wood chips.

  相似文献   

2.
The pretreatment of corn stover with H2SO4 and H3PO4 was investigated. Pretreatments were carried out from 30 to 120 min in a batch reactor at 121°C, with acid concentrations ranging from 0 to 2% (w/v) at a solid concentration of 5% (w/v). Pretreated corn stover was washed with distilled water until the filtrate was adjusted to pH 7.0, followed by surfactant swelling of the cellulosic fraction in a 0–10% (w/v) solution of Tween-80 at room temperature for 12 h. The dilute acid treatment proved to be a very effective method in terms of hemicellulose recovery and cellulose digetibility. Hemicellulose recovery was 62–90%, and enzymatic digestibility of the cellulose that remained in the solid was >80% with 2% (w/v) acid. In all cases studied, the performance of H2SO4 pretreatment (hemicellulose recovery and cellulose digestibility) was significantly better than obtained with H3PO4. Enzymatic hydrolysis was more effective using surfactant than without it, producing 10–20% more sugar. Furthermore, digestibility was investigated as a function of hemicellulose removal. It was found that digestibility was more directly related to hemicellulose removal than to delignification.  相似文献   

3.
Whole treechips obtained from softwood forest thinnings were pretreated via single-and two-stage dilute-sulfuric acid pretreatment. Whole-tree chips were impregnated with dilute sulfuric acid and steam treated in a 4-L steam explosion reactor. In single-stage pretreatment, wood chips were treated using a wide range of severity. In two-stage pretreatment, the first stage was carried out at low severity tomaximize hemicellulose recovery. Solubilized sugars were recovered from the first-stage prehydrolysate by washing with water. In the second stage, water-insoluble solids from first-stage prehydrolysate were impregnated with dilute sulfuric acid, then steam treated at more severe conditions to hydrolyze a portion of the remaining cellulose to glucose and to improve the enzyme digestibility. The total sugar yields obtained after enzymatic hydrolysis of two-stage dilute acid-pretreated samples were compared with sugar yields from single-stage pretreatment. The overall sugar yield from two-stage dilute-acid pretreatment was approx 10% higher, and the net enzyme requirement was reduced by about 50%. Simultaneous saccharification and fermentation using an adapted Saccharomyces cerevisiae yeast strain further improved cellulose conversion yield and lowered the enzyme requirement.  相似文献   

4.
Wheat straw was subjected to autohydrolysis treatments in order to selectively hydrolyze the hemicellulose fraction. The effects of temperature (150–240°C) and non-isothermal reaction time on the composition of both liquid and solid phases were evaluated and interpreted using the severity factor (log R 0). The operational conditions leading to the maximum recovery of hemicellulose-derived sugars were established for log R 0?=?3.96 and correspond to 64% of the original (arabino)xylan with 80% of sugars as xylooligosaccharides. Under these conditions, a solubilization of 58% xylan, 83% arabinan, and 98% acetyl groups occurred. Glucan was mainly retained in the solid phase (maximum solubilization 16%), which enables an enrichment of the solid phase to contain up to 61% glucan. Delignification was not extensive, being utmost 15%. The yields of soluble products, including sugars, acetic acid, and degradation compounds, such as, furfural, 5-hydroxymethylfurfural furfural obtained suggest the fitness of liquid stream for fermentation purposes or to obtain xylooligosaccharides with potential applications in food, pharmaceutical, and cosmetic industries.  相似文献   

5.
Fuel ethanol can be produced from softwood through hydrolysis in an enzymatic process. Prior to enzymatic hydrolysis of the softwood, pretreatment is necessary. In this study, two-step steam pretreatment employing dilute H2SO4 impregnation in the first step and SO2 impregnation in the second step, to improve the overall sugar and ethanol yield, was investigated. The first pretreatment step was performed under conditions of low severity (180°C, 10 min, 0.5% H2SO4) to optimize the amount of hydrolyzed hemicellulose. In the second step, the washed solid material from the first pretreatment step was impregnated with SO2 and pretreated under conditions of higher severity to make the cellulose more accessible to enzymatic attack, as well as to hydrolyze a portion of the cellulose. A wide range of conditions was used in the second step to determine the most favorable combination. The temperatures investigated were between 190 and 230°C, the residence times were 2, 5, and 10 min; and the SO2 concentration was 3%. The effect of pretreatment was assessed by both enzymatic hydrolysis of the solids and by simultaneous saccharification and fermentation (SSF) of the whole slurry, after the second pretreatment step. For each set of pretreatment conditions, the liquid fraction was also fermented to determine any inhibitory effects. Ethanol yield using the SSF configuration reached 66% of the theoretical value for pretreatment conditions in the second step of 210°C and 5 min. The sugar yield using the separate hydrolysis and fermentation configuration reached 71% for pretreatment conditions of 220°C and 5 min.  相似文献   

6.
Corn stover silage is an attractive raw material for the production of biofuels and chemicals due to its high content of carbohydrates and easy degradability. The effects of Fe(NO3)3 pretreatment conditions on sugar yields were investigated for corn stover silage. In addition, a combined severity factor was used to evaluate the effect of pretreatment conditions on the concentration of total sugars and inhibitors. Optimum pretreatment condition was obtained at 150 °C for 10 min with 0.05 M Fe(NO3)3, at which the yields of soluble xylose and glucose in liquid achieved 91.80% of initial xylose, 96.74% of initial arabinose and 19.09% of initial glucose, respectively, meanwhile, 91.84% of initial xylose, 98.24% of initial arabinose, and 19.91% of initial glucose were removed. In addition, a severity analysis showed that the maximum sugar concentration of 33.48 g/l was achieved at combined severity parameter value of 0.62, while the inhibitor concentration was only 0.03 g/l. Fe(NO3)3 is an effective catalyst to enhance hemicellulose hydrolysis in corn stover silage, the yields of monomeric xylose in the liquid fraction reached as high as 91.06% of initial xylose and 96.22% of initial arabinose, respectively.  相似文献   

7.
Two-step steam pretreatment of softwood was investigated with the aim of improving the enzymatic digestibility for ethanol production. In the first step, softwood was impregnated with SO2 and steam pretreated at different severities. The first step was performed at low severity to hydrolyze the hemicellulose and release the sugars into the solution. The combination of time and temperature that yielded the highest amount of hemicellulosic sugars in the solution was determined. In the second step, the washed solid material from the optimized first step was impregnated once more with SO2 and steam pretreated under more severe conditions to enhance the enzymatic digestibility. The investigated temperature range was between 180 and 220°C, and the residence times were 2, 5 and 10 min. The effectiveness of pretreatment was assessed by both enzymatic hydrolysis of the solids and simultaneous saccharification and fermentation (SSF) of the whole slurry after the second pretreatment step, in the presence of antibiotics. For each pretreatment combination, the liquid fraction was fermented to determine any inhibiting effects. At low severity in the second pretreatment step, a high conversion of cellulose was obtained in the enzymatic hydrolysis step, and at a high severity a high conversion of cellulose was obtained in the second pretreatment step. This resulted in an overall yield of sugars that was nearly constant over a wide range of severity. Compared with the one-step steam pretreatment, the two-step steam pretreatment resulted in a higher yield of sugar and in a slightly higher yield of ethanol. The overall sugar yield, when assessed by enzymatic hydrolysis, reached 80%. In the SSF configuration, an overall ethanol yield of 69% was attained.  相似文献   

8.
The objective of this work was to investigate the ability of supercritical (SC) ethanol conditions to attack preferentially the lignin fraction against the carbohydrate fraction and their effects on the product distribution among gases, light products, bio-oils, and chars. In this study, the conversion of each pinewood component was determined by the analysis of solid residues to quantify cellulose, hemicellulose, lignin, and char contents. It is shown that, by tuning the temperature, hemicellulose and lignin are already transformed in subcritical ethanol conditions, lignin being more reactive than hemicellulose. In contrast, native wood cellulose is recalcitrant to liquefaction in SC ethanol near the critical point (Tc = 241 °C and Pc = 61 bar), but 20% of native wood cellulose is converted in SC ethanol at 280 °C. Besides, the severity of the conditions, in terms of temperature and treatment time, does not significantly influence the yields of gases, light products, and bio-oils but strongly enhances char formation. Interestingly, the increase in SC ethanol density does not change the conversion of biomass components but has a marked effect on bio-oil yield and prevents char formation. The optimum fractionation conditions to convert the lignin component, while keeping unattacked the cellulose fraction with a minimum formation of char, are dense SC ethanol, at 250 °C for 1 h, in batch conditions. However, although lignin is more reactive than hemicellulose under these conditions, these fractions are converted, in a parallel way, to around 50% and 60%, respectively.  相似文献   

9.
A batch reactor was employed to steam explode corn fiber at various degrees of severity to evaluate the potential of using this feedstock as part of an enzymatically mediated cellulose-to-ethanol process. Severity was controlled by altering temperature (150–230°C), residence time (1–9 min), and SO2 concentration (0–6% [w/w] dry matter). The effects of varying the different parameters were assessed by response surface modeling. The results indicated that maximum sugar yields (hemicellulose-derived water soluble, and cellulose-derived following enzymatic hydrolysis) were recovered from corn fiber pretreated at 190°C for 5 minutes after exposure to 3% SO2. Sequential SO2-catalyzed steam explosion and enzymatic hydrolysis resulted in a conversion efficiency of 81% of the combined original hemicellulose and cellulose in the corn fiber to monomeric sugars. An additional posthydrolysis step performed on water soluble hemicellulose stream increased the concentration of sugars available for fermentation by 10%, resulting in the high conversion efficiency of 91%. Saccharomyces cerevisiae was able to ferment the resultant corn fiber hydrolysates, perhydrolysate, and liquid fraction from the posthydrolysis steps to 89, 94, and 85% of theoretical ethanol conversion, respectively. It was apparent that all of the parameters investigated during the steam explosion pretreatment had a significant effect on sugar recovery, inhibitory formation, enzymatic conversion efficiency, and fermentation capacity of the yeast.  相似文献   

10.
Wheat straw was pretreated by phosphoric acid plus hydrogen peroxide (PHP), in which temperature, time, and H3PO4 proportion for pretreatment were investigated by using response surface method. Results indicated that hemicellulose and lignin removal positively responded to the increase of pretreatment temperature, H3PO4 proportion, and time. H3PO4 proportion was the most important variable to control cellulose recovery, followed by pretreatment temperature and time. Moreover, these three variables all negatively related to cellulose recovery. Increasing H3PO4 proportion can improve enzymatic hydrolysis; however, reduction on cellulose recovery results in decrease of glucose yield. Extra high temperature or long time for pretreatment was not beneficial to enzymatic hydrolysis and glucose yield. Based on the criterion for minimizing H3PO4 usage and maximizing glucose yield, the optimized pretreatment conditions was 40 °C, 2.0 h, and H3PO4 proportion of 70.2 % (H2O2 proportion of 5.2 %), by which glucose yielded 299 mg/g wheat straw (946.2 mg/g cellulose) after 72-h enzymatic hydrolysis.  相似文献   

11.
Pretreatment has been viewed as the most efficient strategy for lignocellulosic biomass-to-fermentable sugars conversion. In this study a novel pretreatment with acidic electrolyzed water (AEW) and FeCl3 was proposed and tested to deconstruct the recalcitrance of corn stover and enhance its subsequent cellulose-to-sugar conversion. The effects of AEW pH and FeCl3 concentration on hemicellulose degradation were investigated, and the results showed the highest hemicellulose removal (93.40 %) and recovery (93.04 %) were achieved at AEW pH 2.30 and FeCl3 concentration 0.05 mol/L. Further research on the properties of AEW solutions with FeCl3, including their pH, ORP, and DO revealed the synergistic effects of strong acidity and high oxidizing capacity of the solution could boost hemicellulose breakup and enhance the enzymatic hydrolysis of cellulose (92.00 %) by removing most of hemicellulose and increasing the accessibility and digestibility of cellulose. Therefore, these studies prove AEW coupled with FeCl3 pretreatment is an effective and promising approach in biomass-to-biofuel process.  相似文献   

12.
The wet oxidation pretreatment (water, oxygen, elevated temperature, and pressure) of softwood (Picea abies) was investigated for enhancing enzymatic hydrolysis. The pretreatment was preliminarily optimized. Six different combinations of reaction time, temperature, and pH were applied, and the compositions of solid and liquid fractions were analyzed. The solid fraction after wet oxidation contained 58–64% cellulose, 2–16% hemicellulose, and 24–30% lignin. The pretreatment series gave information about the roles of lignin and hemicellulose in the enzymatic hydrolysis. The temperature of the pretreatment, the residual hemicellulose content of the substrate, and the type of the commercial cellulase preparation used were the most important factors affecting the enzymatic hydrolysis. The highest sugar yield in a 72-h hydrolysis, 79% of theoretical, was obtained using a pretreatment of 200°C for 10 min at neutral pH.  相似文献   

13.
Corn stover is a domestic feedstock that has potential to produce significant quantities of fuel ethanol and other bioenergy and biobased products. However, comprehensive yield and carbon mass balance information and validated kinetic models for dilute-sulfuric acid (H2SO4) pretreatment of corn stover have not been available. This has hindered the estimation of process economics and also limited the ability to perform technoeconomic modeling to guide research. To better characterize pretreatment and assess its kinetics, we pretreated corn stover in a continuous 1 t/d reactor. Corn stover was pretreated at 20% (w/w) solids concentration over a range of conditions encompassing residence times of 3–12 min, temperatures of 165–195°C, and H2SO4 concentrations of 0.5–1.4% (w/w). Xylan conversion yield and carbon mass balance data were collected at each run condition. Performance results were used to estimate kinetic model parameters assuming biphasic hemicellulose hydrolysis and a hydrolysis mechanism incorporating formation of intermediate xylo-oligomers. In addition, some of the pretreated solids were tested in a simultaneous saccharification and fermentation (SSF) process to measure the reactivity of their cellulose component to enzymatic digestion by cellulase enzymes. Monomeric xylose yields of 69–71% and total xylose yields (monomers and oligomers) of 70–77% were achieved with performance level depending on pretreatment severity. Cellulose conversion yields in SSF of 80–87% were obtained for some of the most digestible pretreated solids.  相似文献   

14.
The pretreatment of lignocellulosic materials prior to the enzymatic hydrolysis is essential to the sugar yield and bioethanol production. Dilute acid hydrolysis of black spruce softwood chip was performed in a continuous high temperature reactor followed with steam explosion and mechanical refining. The acid-soaked wood chips were pretreated under different feeding rates (60 and 92 kg/h), cooking screw rotation speeds (7.2 and 14.4 rpm), and steam pressures (12 and 15 bar). The enzymatic hydrolysis was carried out on the acid-insoluble fraction of pretreated material. At lower feeding rate, the pretreatment at low steam pressure and short retention time favored the recovery of hemicellulose. The pretreatment at high steam pressure and longer retention time recovered less hemicellulose but improved the enzymatic accessibility. As a result, the overall sugar yields became similar no matter what levels of the retention time or steam pressure. Comparing with lower feeding rate, higher feeding rate resulted in consistently higher glucose yield in both liquid fraction after pretreatment and that released after enzymatic hydrolysis.  相似文献   

15.
The fermentable sugars in lignocellulosic biomass are derived from cellulose and hemicellulose, which are not readily accessible to enzymatic saccharification because of their recalcitrance. An ethanosolv pretreatment method was applied for the enzymatic saccharification of barley straw with an inorganic acid. The effects of four process variables (temperature, time, catalyst dose, and ethanol concentration) on the barley straw pretreatment were analyzed over a broad range using a small composite design and a response surface methodology. The yield of the residual solid and composition of the solid fraction differed as ethanosolv conditions varied within the experimental range. A glucan recovery, xylan recovery, and delignification were 85%, 14%, and 69% at center point conditions (170°C, 60 min, 1.0% (w/w) H2SO4, and 50% (w/w) ethanol), respectively. Ethanosolv pretreatment removed lignin effectively. Additionally, the highest enzymatic digestibility of 85.3% was obtained after 72 h at center point conditions.  相似文献   

16.
Forest biomass is a promising resource for future biofuels and bioproducts. Pre-pulping extraction of hemicellulose by alkaline (Green Liquor) pretreatment produces a neutral-pH extract containing hemicellulose-derived oligomers. A near-term option for use of this extract is to hydrolyze the oligomers to fermentable monomer sugars. Chips of mixed northern hardwoods were cooked in a rocking digester at 160 °C for 110 min in Green Liquor at a concentration of 3% Na2O equivalent salts on dry wood. The mass of wood extracted into the Green Liquor extract was approximately 11.4% of the debarked wood mass, which resulted in a dilute solution of oligomeric hemicelluloses sugars. The concentration of the extract was increased through partial evaporation prior to hydrolysis. Dilute sulfuric acid hydrolysis was applied at conditions ranging from 100 to 160 °C, 2% to 6% (w/v) H2SO4, and 2- to 258-min residence time. The maximum fermentable sugar concentration achieved from evaporated extract was 10.7 g/L, representing 90.7% of the maximum possible yield. Application of the biomass pretreatment severity function to the hydrolysis results proved to offer a relatively poor prediction of temperature and reaction time interaction. The combined severity function, which incorporates reaction time, temperature, and acid concentration, did prove to provide a useful means of trading off the combined effects of these three variables on total sugar yields.  相似文献   

17.
Biological conversion of biomass into fuels and chemicals requires hydrolysis of the polysaccharide fraction into monomeric sugars prior to fermentation. Hydrolysis can be performed enzymatically or with mineral acids. In this study, dilute sulfuric acid was used as a catalyst for the pretreatment of rapeseed straw. The purpose of this study is to optimize the pretreatment process in a 15-mL bomb tube reactor and investigate the effects of the acid concentration, temperature, and reaction time. These parameters influence hemicellulose removal and production of sugars (xylose, glucose, and arabinose) in the hydrolyzate as well as the formation of by-products (furfural, 5-hydroxymethylfurfural, and acetic acid). Statistical analysis was based on a model composition corresponding to a 33 orthogonal factorial design and employed the response surface methodology to optimize the pretreatment conditions, aiming to attain maximum xylan, mannan, and galactan (XMG) extraction from hemicellulose of rapeseed straw. The obtained optimum conditions were: H2SO4 concentration of 1.76% and temperature of 152.6 °C with a reaction time of 21 min. Under these optimal conditions, 85.5% of the total sugar was recovered after acid hydrolysis (78.9% XMG and 6.6% glucan). The hydrolyzate contained 1.60 g/L glucose, 0.61 g/L arabinose, 10.49 g/L xylose, mannose, and galactose, 0.39 g/L cellobiose, 0.94 g/L fructose, 0.02 g/L 1,6-anhydro-glucose, 1.17 g/L formic acid, 2.94 g/L acetic acid, 0.04 g/L levulinic acid, 0.04 g/L 5-hydroxymethylfurfural, and 0.98 g/L furfural.  相似文献   

18.
Although considerable progress has been made in technology for converting lignocellulosic biomass into ethanol, substantial opportunities still exist toreduce production costs. In biomass pretreatment, reducing milling power is a technological improvement that will substantially lower production costs for ethanol. Improving sugar yield from hemicellulose hydrolysis would also reduce ethanol production costs. Thus, it would be desirable to test innovative pretreatment conditions to improve the economics by reducing electrical power of the milling stage and by optimizing pretreatment recovery of hemicellulose, as well as to enhance cellulose hydrolysis. The objective of this study was to evaluate the effect of chip size (2–5, 5–8, and 8–12 mm) on steam-explosion pretreatment (190 and 210°C, 4 and 8 min) of softwood (Pinus pinater).  相似文献   

19.
Chemical pretreatments of corn stover for enhancing enzymatic digestibility   总被引:3,自引:0,他引:3  
Corn stover, the most abundant agricultural residue in Hungary, is a potential raw material for the production of fuel ethanol as a result of its high content of carbohydrates, but a pretreatment is required for its efficient hydrolysis. In this article, we describe the results using various chemicals such as dilute H2SO4, HCl, and NaOH separately as well as consecutively under relative mild conditions (120°C, 1h). Pretreatment with 5% H2SO4 or 5% HCl solubilized 85% of the hemicellulose fraction, but the enzymatic conversion of pretreated materials increased only two times compared to the untreated corn stover. Applying acidic pretreatment following a 1-d soaking in base achieved enzymatic conversion that was nearly the theoretical maximum (95.7%). Pretreatment with 10% NaOH decreased the lignin fraction >95%, increased the enzymatic conversion more than four times, and gave a 79.4% enzymatic conversion. However, by increasing the reaction time, the enzymatic degradability could also be increased significantly, using a less concentrated base. When the time of pretreatment was increased three times (0.5% NaOH at 120°C), the amount of total released sugars was 47.9 g from 100 g (dry matter) of untreated corn stover.  相似文献   

20.
A pretreatment of lignocellulosic materials with sodium hypochlorite-hypochlorous acid at controlled pH (between 7 and 9) considerably increases the accessibility of the cellulosic part of the substrate to chemical and biochemical reactants. As a consequence, the yield and rate of the enzymatic hydrolysis to glucose is largely in creased. Wheat straw and spruce sawdust have been investigated. The increase in accessibility is assigned to degradation and (or) de tachment of the lignin network. The loss in cellulose and hemicellulose is not important, lignin being preferentially degraded under carefully controlled pH conditions. When applied to pure cel lulose, the pretreatment decreases the yield of enzymatic hydrolysis; in the absence of lignin, oxidation of the anhydroglucose units is im portant and results in the inhibition of the enzymatic hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号