首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
拉氏变换求解梁的挠曲线方程   总被引:1,自引:1,他引:0  
运用拉普拉斯变换求解梁的挠曲线近似微分方程, 并利用坐标系平移变换导出了分段梁挠曲线方程的一般形式, 通过算例验证简述了用此方法可方便地根据弯矩方程和边界条件求出梁各段挠曲线方程的表达式.  相似文献   

2.
陈景亮  谈至明 《力学季刊》2016,37(2):311-317
采用分离变量法求得了冲击荷载作用下的开尔文地基上两端自由有限长梁动态挠曲线方程的级数解;分析了地基梁结构参数和冲击荷载作用时间对梁挠曲线特征值(最大挠度和挠曲线面积)的影响规律;比较地基梁动态挠曲线与静荷载引起的地基梁静态挠曲线之间差异,发现:(1)等效地基梁动态最大挠度或挠曲线面积的当量静荷载值与冲量之间不存在良好对应关系;(2)依据地基梁动态挠曲线用静态方法反演得到的地基梁结构参数有可能含有较大的偏差.  相似文献   

3.

梁的挠曲线方程一般是分段多项式的形式,如果通过某种方法确定了多项式的系数,那么挠曲线方程完全确定。本文利用该思想提出了一种计算梁的挠度和转角的新方法。首先将梁划分为若干区间,然后将每一区间映射到标准区间,在标准区间上以若干点的挠度和转角为待定系数构造梁的挠曲线方程,用配点法得到若干代数方程,最后联合求解所有的代数方程即得到问题的解。新方法计算过程简单,可供教学参考。

  相似文献   

4.
为了解决旋转悬臂梁的挠曲线函数的计算问题,本文联合应用d'Alembert原理和Bernoulli-Euler方程建立了重力场中旋转悬臂梁的挠曲线微积分方程;在此基础上,采用Rayleigh-Ritz法求得了这类梁的挠曲线解析函数。最后,应用该函数具体计算了一悬臂梁以不同角速度旋转时的挠曲线形状,从中归纳出旋转悬臂梁的弯曲变形随着其角速度的增大而减小的结论。  相似文献   

5.
介绍一种合二而一的方法,从挠曲线的一般形式出发,通过边界条件确定待定常数,能同时得到挠曲线方程,转角方程,弯矩方程,剪力方程和支座反力. 既避免了微分与积分运算又无需区分静定与超静定梁,也不论挠曲线方程是否分段,都可获解决. 而且方法程式化具有便捷易学和一气呵成的特点. 同时还深刻掲示出变形和内力的有机联系.  相似文献   

6.
超静定梁变形计算的积分法   总被引:1,自引:0,他引:1  
从线性化弯矩和曲率关系出发,将超静定梁多余反力的弯矩叠加到梁截面弯 矩中去,经两次积分得到了包括积分常数和多余反力的分段转角方程和挠曲线方程,利用边界 条件和连续条件确定积分常数和多余反力,进而确定了转角方程和挠曲线方程.文中工作扩大 了积分法的应用范围. 教学实践表明,用积分法解超静定梁的变形能够起到帮助学生学习和 掌握固体力学的边值问题解题思想的作用.  相似文献   

7.
针对材料在弹塑性阶段的应用不完全问题,本文用弹塑性分区最小势能原理,推导出线性强化模型下弯曲直梁的势能分区准则和欧拉方程.求解出集中载荷作用下悬臂梁和简支梁的挠曲线方程,将挠曲线方程代入MATLAB软件进行数值计算并将其结果与ANSYS对比分析.结果表明:数值解与有限元值均满足实际工程中允许的误差范围,给出的方法可为解...  相似文献   

8.
????? 《力学与实践》1992,14(2):46-48
<正> 求梁变形的方法很多,本文依据挠曲线近似微分方程,采用特定系致法求梁变形.该法可以写出具有特定系数的挠曲线方程,对于给定常用载荷梁,可以确定待定系数,由此得出梁的变形方程.对于梁弯曲变形的挠曲线近似微分方程,可写成  相似文献   

9.
对矩形截面的理想弹塑性直梁在靠模成形过程中边界待定问题,用势能变分原理推导出理想弹塑性材料的靠模悬臂梁弯曲成形的挠曲线方程,从而得到直梁靠模成形的弯曲问题的解.计算表明,推导出的直梁靠模成形的挠曲面方程可应用于工程实际.  相似文献   

10.
细长压杆临界压力欧拉公式的统一推导   总被引:6,自引:0,他引:6  
利用细长压杆微小弯曲的平衡条件,得到了压杆挠曲线近似微分方程,将挠曲线的初参数解用于几种常见支承条件的细长压杆,可以方便地求得相应的临界压力欧拉公式。  相似文献   

11.
正http://www.icfm7.org First Announcement and Call for PapersThe objective of International Conference on Fluid Mechanics(ICFM)is to provide a forum for researchers to exchange new ideas and recent advances in the fields of theoretical,experimental,computational Fluid Mechanics as well as interdisciplinary subjects.It was successfully convened by the Chinese Society of Theoretical and Applied Mechanics(CSTAM)in Beijing(1987,  相似文献   

12.
Contributions: The Journal, Acta Mechanica Solida Sinica, is pleased to receive papers from engineers and scientists working in various aspects of solid mechanics. All contributions are subject to critical review prior to acceptance and publication.  相似文献   

13.
14.
15.
16.
17.
Preface     
This special issue of PARTICUOLOGY is devoted to the first UK-China Particle Technology Forum taking place in Leeds, UK, on 1-3 April 2007. The forum was initiated by a number of UK and Chinese leading academics and organised by the University of Leeds in collaboration with Chinese Society of Particuology, Particle Technology Subject Group (PTSG) of the Institution of Chemical Engineers (IChemE), Particle Characterisation Interest Group (PCIG) of the Royal Society of Chemistry (RSC) and International Fine Particle Research Institute (IFPRI). The forum was supported financially by the Engineering and Physics Sciences Research Council (EPSRC) of United Kingdom,  相似文献   

18.
针对捷联导引头无法直接获取视线角速度等信息的问题,研究了鲁棒滤波在大气层外飞行器捷联导引头视线角速度估计中的应用。为了建立非线性滤波估计模型,考虑目标视线角速度的慢变特性,采用一阶马尔科夫模型建立了状态方程;推导了视线角速度的解耦模型,并建立了量测方程;考虑到实际应用中存在系统噪声统计特性失准的问题,基于Huber-Based鲁棒滤波方法,设计了视线角速度滤波器,并完成了基于Huber-Based滤波方法和扩展卡尔曼滤波方法的数学仿真。仿真结果表明Huber-Based滤波方法的视线角、视线角速度及视线角加速度估计精度分别达到0.1140'、0.1423'/s、0.0203'/s2,而扩展卡尔曼滤波方法的视线角、视线角速度及视线角加速度估计精度仅分别为0.6577'、0.6415'/s、0.0979'/s~2。仿真结果证明了该方法可以有效地估计出相对视线角速度等信息,并且在非高斯噪声的条件下,依然可获得较高的估计精度,具有一定的鲁棒性。  相似文献   

19.
《Acta Mechanica Sinica》2014,(3):F0003-F0003
正Each of the sections below provides essential information for authors.We recommend that you take the time to read them before submitting a contribution to Acta Mechanica Sinica.We hope our guide to authors may help you navigate to the appropriate section.How to prepare a submission This document provides an outline of the editorial process involved in publishing a scientific paper in Acta Mechanica  相似文献   

20.
Multiscale material intends to enhance the strength and life of mechanical systems by matching the transmitted spatiotemporal energy distribution to the constituents at the different scale, say—macro, micro, nano, and pico,—, depending on the needs. Lower scale entities are, particularly, critical to small size systems. Large structures are less sensitive to microscopic effects. Scale shifting laws will be developed for relating test data from nano-, micro-, and macro-specimens. The benefit of reinforcement at the lower scale constituents needs to be justified at the macroscopic scale. Filling the void and space in regions of high energy density is considered.Material inhomogeneity interacts with specimen size. Their combined effect is non-equilibrium. Energy exchange between the environment and specimen becomes increasingly more significant as the specimen size is reduced. Perturbation of the operational conditions can further aggravate the situation. Scale transitional functions and/or fj/j+1 are introduced to quantify these characteristics. They are represented, respectively, by , and (fmi/ma,fna/mi,fpi/na). The abbreviations pi, na, mi, and ma refer to pico, nano, micro and macro.Local damage is assumed to initiate at a small scale, grows to a larger scale, and terminate at an even larger scale. The mechanism of energy absorption and dissipation will be introduced to develop a consistent book keeping system. Compaction of mass density for constituents of size 10−12, 10−9, 10−6, 10−3 m, will be considered. Energy dissipation at all scales must be accounted for. Dissipations at the smaller scale must not only be included but they must abide by the same physical and mathematical interpretation, in order to avoid inconsistencies when making connections with those at the larger scale where dissipations are eminent.Three fundamental Problems I, II, and III are stated. They correspond to the commonly used service conditions. Reference is made to a Representative Tip (RT), the location where energy absorption and dissipation takes place. The RT can be a crack tip or a particle. At the larger size scales, RT can refer to a region. Scale shifting of results from the very small to the very large is needed to identify the benefit of using multiscale materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号