首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
An investigation has been conducted to determine the effect of the grid non-orthogonality on the convergence behavior of two-dimensional lid-driven cavity flows. The relevant theory is presented in this article. In the present work, the contravariant velocity fluxes are used as the dependent variables on non-orthogonal, non-staggered grids. The momentum equations retain a strongly conservative form. Two practices for treating the momentum interpolation method in general curvilinear co-ordinates are presented. In each practice, the momentum interpolation formulations with and without velocity underrelaxation factor are considered. The discretization equations are solved using the SIMPLE, SIMPLEC and SIMPLER algorithms. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
A pressure correction formula is proposed for the SIMPLE-like algorithm in order to improve the rate of the convergence when solving laminar Navier–Stokes equations when there is rapidly varying pressure. Based on global mass conservation, a line average pressure correction is derived by integration of the momentum equation for approximate one-dimensional flow. The use of this formula with the SIMPLE-like algorithm can rapidly build up the pressure distribution in the region where the pressure undergoes a very large change, which normally causes the rate of convergence of the SIMPLE or the SIMPLEC schemes to be slow. In order to illustrate the technique, the performances of SIMPLE and of SIMPLEC with the average pressur correction are investigated for axisymmetric flow past and through a sampler. A comparison of these two techniques shows that the average pressure correction proposed in this paper significantly accelerates the rate of convergence.  相似文献   

3.
A numerical scheme for the prediction of free surface flows is presented and investigated. The method is based on an adaptive grid Eulerian finite-volume method, where non-orthogonal boundary-fitted moving grids are employed to follow the free surface. The underlying flow solver consists in a pressure-correction scheme of SIMPLE type with multigrid acceleration, which is iteratively combined with the moving grid technique. Several numerical examples are considered to illustrate the capabilities of the approach.  相似文献   

4.
In this paper, the Cartesian velocity components and the covariant velocity components are adopted respectively as the main variables in solving the momentum equations in the SIMPLE-like method to calculate a lid-driven cavity flow on non-orthogonal collocated grids. In total, more than 400 computer runs are carried out for a two-dimensional problem. The accuracy and convergence performance of using Cartesian and covariant velocity components are compared in detail. Comparisons show that both the Cartesian and covariant velocity methods have the same numerical accuracy. The convergence rate of the covariant velocity method can be faster than that of the Cartesian velocity method if the relaxation factor for pressure is small enough. However, the convergence range of the relaxation factor for pressure in the covariant velocity method is quite narrow. When the cross-derivatives in the pressure-correction equation are retained approximately, its convergence performance can be greatly improved. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
2008年,本文作者和陶文铨等提出了一种用于速度和压力耦合求解的高效稳定压力修正全隐算法IDEAL,该算法通过在每个迭代层次上对压力方程进行两次内迭代计算,完全克服了SIMPLE算法的两个假设,充分满足了速度和压力之间的耦合,从而大大提高了计算的收敛性和健壮性.为了进一步实现IDEAL算法的推广应用,本文基于三维倾斜方腔顶盖驱动流动,研究了IDEAL算法在不同网格扭曲率下的求解特性.研究发现,在不同网格扭曲率下,IDEAL算法的健壮性和收敛性均优于SIMPLE算法,特别在高网格扭曲率情况下,IDEAL算法求解性能更加优于SIMPLE算法.在不同网格扭曲率下,IDEAL算法健壮性保持不变,几乎可以在任意速度亚松弛因子下获得收敛的解,同时IDEAL算法最短计算耗时较SIMPLE算法减少了56%~89%,验证了IDEAL算法的优越性.  相似文献   

6.
2008年,本文作者和陶文铨等提出了一种用于速度和压力耦合求解的高效稳定压力修正全隐算法IDEAL,该算法通过在每个迭代层次上对压力方程进行两次内迭代计算,完全克服了SIMPLE算法的两个假设,充分满足了速度和压力之间的耦合,从而大大提高了计算的收敛性和健壮性。为了进一步实现IDEAL算法的推广应用,本文基于三维倾斜方腔顶盖驱动流动,研究了IDEAL算法在不同网格扭曲率下的求解特性。研究发现,在不同网格扭曲率下,IDEAL算法的健壮性和收敛性均优于SIMPLE算法,特别在高网格扭曲率情况下,IDEAL算法求解性能更加优于SIMPLE算法。在不同网格扭曲率下,IDEAL算法健壮性保持不变,几乎可以在任意速度亚松弛因子下获得收敛的解,同时IDEAL算法最短计算耗时较SIMPLE算法减少了56%~89%,验证了IDEAL算法的优越性。  相似文献   

7.
This article presents the effect of the grid skewness on the ranges of the underrelaxation factors for pressure and velocity. The effect is reflected by the relationship between the numbers of iterations required and the ranges of the underrelaxation factors for a converged solution. Four typical cavity flow problems are solved on non‐staggered grids for this purpose. Two momentum interpolation practices namely, practice A and practice B, together with SIMPLE, SIMPLEC and SIMPLER algorithms are employed. The results show that the ranges of the pressure underrelaxation factor values for convergence exist if the SIMPLE algorithm is used, while no restrictions are observed if the SIMPLEC algorithm is used. From the curves obtained using the SIMPLER algorithm, the ranges of those based on practice B are wider than those based on practice A. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
The development of a multigrid solution algorithm for the computation of three-dimensional laminar fully-elliptic incompressible flows is presented. The procedure utilizes a non-orthogonal collocated arrangement of the primitive variables in generalized curvilinear co-ordinates. The momentum and continuity equations are solved in a decoupled manner and a pressure-correction equation is used to update the pressures such that the fluxes at the cell faces satisfy local mass continuity. The convergence of the numerical solution is accelerated by the use of a Full Approximation Storage (FAS) multigrid technique. Numerical computations of the laminar flow in a 90° strongly curved pipe are performed for several finite-volume grids and Reynolds numbers to demonstrate the efficiency of the present numerical scheme. The rates of convergence, computational times, and multigrid performance indicators are reported for each case. Despite the additional computational overhead required in the restriction and prolongation phases of the multigrid cycling, the superior convergence of the present algorithm is shown to result in significantly reduced overall CPU times.  相似文献   

9.
A 2-D analysis is made for the dynamic interactions between viscous flow and one or more circular cylinders. The cylinder is free to respond to the fluid excitation and its motions are part of the solution. The numerical procedure is based on the finite volume discretization of the Navier–Stokes equations on adaptive tri-tree grids which are unstructured and nonorthogonal. Both a fully implicit scheme and a semi-implicit scheme in the time domain have been used for the momentum equations, while the pressure correction method based on the SIMPLE technique is adopted to satisfy the continuity equation. A new upwind method is developed for the triangular and unstructured mesh, which requires information only from two neighbouring cells but is of order of accuracy higher than linear. A new procedure is also introduced to deal with the nonorthogonal term. The pressure on the body surface required in solving the momentum equation is obtained through the Poisson equation in the local cell. Results including flow field, pressure distribution and force are provided for fixed single and multiple cylinders and for an unrestrained cylinder in steady incoming flow with Reynolds numbers at 200 and 500 and in unsteady flow with Keulegan–Carpenter numbers at 5 and 10.  相似文献   

10.
The control volume, finite difference method and the k-? tubulence model are employed in a numerical simulation of the turbulent fluid flow both outside and inside a blunt cylindrical sampler which houses a paper filter in its chamber. The presence of a paper filter, which has a very large resistance, results in a large pressure drop across the filter and this causes difficulties in making the SIMPLE or the SIMPLEC scheme converge. In order to improve the rate of convergence of the SIMPLE-like algorithm when the resistance of the filter is very large, an average pressure correction formula is proposed. Based on global mass conservation, a line average pressure correction for the paper filter is derived using a modified Darcy law for a porous medium. A combination of this formula and the SIMPLE-like algorithm can rapidly build up the pressure drop across the filter and hence dramatically improve the rate of convergence of the iterative scheme. Comparisons of the convergence histories and the numerical results for the fluid flow when using SIMPLE and SIMPLEC with the average pressure correction method show that the average pressure correction method for dealing with the paper filter significantly accelerates the rate of convergence of the iterative scheme.  相似文献   

11.
The SMAC (simplified marker and cell) time-advancing method for solving the unsteady incompressible Navier-Stokes equations on non-staggered grids is developed in generalized co-ordinate systems. The primitive variable formulation uses Cartesian velocities and pressure, all defined at the centre of the control volume, as the dependent variables. A special elliptic flux correction at the faces of the finite volume is utilized in discretizing the continuity equation to suppress pressure oscillations. The test flows considered are a polar cavity flow starting from rest and the flow around a circular cylinder. The numerical results are compared with experimental results and results obtained by the well-known SIMPLEC and PISO methods. The comparisons show that the elliptic flux correction technique works well in suppressing pressure oscillations and that the SMAC method is more efficient than the SIMPLEC and PISO methods for both steady and unsteady flows.  相似文献   

12.
It is well known that exact projection methods (EPM) on non‐staggered grids suffer for the presence of non‐solenoidal spurious modes. Hence, a formulation for simulating time‐dependent incompressible flows while allowing the discrete continuity equation to be satisfied up to machine‐accuracy, by using a Finite Volume‐based second‐order accurate projection method on non‐staggered and non‐uniform 3D grids, is illustrated. The procedure exploits the Helmholtz–Hodge decomposition theorem for deriving an additional velocity field that enforces the discrete continuity without altering the vorticity field. This is accomplished by first solving an elliptic equation on a compact stencil that is by performing a standard approximate projection method (APM). In such a way, three sets of divergence‐free normal‐to‐face velocities can be computed. Then, a second elliptic equation for a scalar field is derived by prescribing that its additional discrete gradient ensures the continuity constraint based on the adopted linear interpolation of the velocity. Characteristics of the double projection method (DPM) are illustrated in details and stability and accuracy of the method are addressed. The resulting numerical scheme is then applied to laminar buoyancy‐driven flows and is proved to be stable and efficient. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
基于非结构化同位网格的SIMPLE算法   总被引:4,自引:1,他引:4  
通过基于非结构化网格的有限体积法对二维稳态Navier—Stokes方程进行了数值求解。其中对流项采用延迟修正的二阶格式进行离散;扩散项的离散采用二阶中心差分格式;对于压力-速度耦合利用SIMPLE算法进行处理;计算节点的布置采用同位网格技术,界面流速通过动量插值确定。本文对方腔驱动流、倾斜腔驱动流和圆柱外部绕流问题进行了计算,讨论了非结构化同位网格有限体积法在实现SIMPLE算法时,迭代次数与欠松弛系数的关系、不同网格情况的收敛性、同结构化网格的对比以及流场尾迹结构。通过和以往结果比较可知,本文的方法是准确和可信的。  相似文献   

14.
The discretization of the incompressible Navier-Stokes equation on boundary-fitted curvilinear grids is considered. The discretization is based on a staggered grid arrangement and the Navier-;Stokes equations in tensor formulation including Christoffel symbols. It is shown that discretization accuracy is much enhanced by choosing the velocity variables in a special way. The time-dependent equations are solved by a pressure-correction method in combination with a GMRES method. Special attention is paid to the discretization of several types of boundary conditions. It is shown that fairly non-smooth grids may be used using our approach.  相似文献   

15.
亚临界雷诺数下圆柱绕流的大涡模拟   总被引:20,自引:0,他引:20  
苏铭德  康钦军 《力学学报》1999,31(1):100-105
本文应用Smagorinsky涡粘性模式和二阶精度的有限体积法对圆柱绕流的流场进行大涡模拟.求解了非正交曲线坐标系下的N-S方程,对雷诺数为100和20000的工况进行了计算.计算结果与实验及动力涡粘性模式的结果进行了比较,表明计算对于层流及高亚临界雷诺数的湍流流动是合理的  相似文献   

16.
A comparison of multigrid methods for solving the incompressible Navier–Stokes equations in three dimensions is presented. The continuous equations are discretised on staggered grids using a second‐order monotonic scheme for the convective terms and implemented in defect correction form. The convergence characteristics of a decoupled method (SIMPLE) are compared with those of the cellwise coupled method (SCGS). The convergence rates obtained for computations of the three‐dimensional lid‐driven cavity problem are found to be very similar to those obtained for computations of the corresponding two‐dimensional problem with comparable grid density. Although the convergence rate of SCGS is thus superior to that of SIMPLE, the decoupled method is found to be more efficient computationally and requires less computing time for a given level of convergence. The linewise implementation of the coupled method (CLGS) is also investigated and shown to be more efficient than SCGS, although the convergence rate and computing time required per cycle are both found to depend on the direction of sweep. The optimal implementation of CLGS is found to be only marginally more effective than SIMPLE, but a change to the structure of the data storage would increase the advantage. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
A numerical technique (FGVT) for solving the time-dependent incompressible Navier–Stokes equations in fluid flows with large density variations is presented for staggered grids. Mass conservation is based on a volume tracking method and incorporates a piecewise-linear interface reconstruction on a grid twice as fine as the velocity–pressure grid. It also uses a special flux-corrected transport algorithm for momentum advection, a multigrid algorithm for solving a pressure-correction equation and a surface tension algorithm that is robust and stable. In principle, the method conserves both mass and momentum exactly, and maintains extremely sharp fluid interfaces. Applications of the numerical method to prediction of two-dimensional bubble rise in an inclined channel and a bubble bursting through an interface are presented. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
Second‐order accurate projection methods for simulating time‐dependent incompressible flows on cell‐centred grids substantially belong to the class either of exact or approximate projections. In the exact method, the continuity constraint can be satisfied to machine‐accuracy but the divergence and Laplacian operators show a four‐dimension nullspace therefore spurious oscillating solutions can be introduced. In the approximate method, the continuity constraint is relaxed, the continuity equation being satisfied up to the magnitude of the local truncation error, but the compact Laplacian operator has only the constant mode. An original formulation for allowing the discrete continuity equation to be satisfied to machine‐accuracy, while using a finite volume based projection method, is illustrated. The procedure exploits the Helmholtz–Hodge decomposition theorem for deriving an additional velocity field that enforces the discrete continuity without altering the vorticity field. This is accomplished by solving a second elliptic field for a scalar field obtained by prescribing that its additional discrete gradients ensure discrete continuity based on the previously adopted linear interpolation of the velocity. The resulting numerical scheme is applied to several flow problems and is proved to be accurate, stable and efficient. This paper has to be considered as the companion of: 'F. M. Denaro, A 3D second‐order accurate projection‐based finite volume code on non‐staggered, non‐uniform structured grids with continuity preserving properties: application to buoyancy‐driven flows. IJNMF 2006; 52 (4):393–432. Now, we illustrate the details and the rigorous theoretical framework. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
含能材料密实床燃烧转爆轰的数值模拟   总被引:2,自引:0,他引:2  
姜羲  王荪源 《爆炸与冲击》1992,12(2):97-105
本文建立了含能材料密实床燃烧转爆轰的全粘性欧拉二维非定常两相反应流数学模型。将SIMPLE型的数值计算方法引入燃烧转爆轰的二维数值计算。对跨音速流动的处理和可压缩流体压力校正方程的建立提出了改进方法,并以无起爆药雷管作为算例。结果表明,本方法较好克服了二维两相流数值解的振荡现象。  相似文献   

20.
A local mode Fourier analysis is used to assess the suitability of the SIMPLE pressure-correction algorithm to act as a smoother in a multigrid method. The necessary ellipticity of the Navier-Stokes equations and their discrete representation are established. The theoretical analysis is compared with practical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号