首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new chelating sorbent has been developed using Amberlite XAD-2 resin anchored with pyrocatechol through –N=C– group. This sorbent, characterised by elemental analysis and infrared (IR) spectra, was used as packing for the minicolumn in an on-line system preconcentration system for cadmium, cobalt, copper and nickel determination. Metal ions were sorbed in the minicolumn, from which it could be eluted directly to the nebulizer–burner system of the flame atomic absorption spectrometer (FAAS). Elution of all metals from minicolumn can be made with 0.50 mol L 1 HCl or HNO3. The enrichment factors obtained were 16 (Cd), 24 (Co), 15 (Cu) and 19 (Ni), for 60 s preconcentration time, and 39 (Cd), 69 (Co), 36 (Cu) and 41 (Ni), if used 180 s preconcentration time. Under the optimum conditions, the proposed procedure allowed the determination of cadmium, cobalt, copper and nickel with detection limits of 0.31, 0.32, 0.39 and 1.64 μg L 1, respectively, when used preconcentration periods of 180 s. The accuracy of the developed procedure was sufficient and evaluated by the analysis of the certified reference materials NIST 1515 apple leaves and NIST 1570a spinach leaves. The method was applied to the analysis of food samples (spinach, black tea and rice flour).  相似文献   

2.
This work reports the evaluation of the combined use of Pd and HF as chemical modifiers for the direct determination of total chromium in waters derived from petroleum exploration employing electrothermal atomic absorption spectrometry (ET AAS). Such waters, usually called as produced waters, have complex composition presenting a number of organic and inorganic substances. When obtained from offshore operations they also present high salinity. In order establish conditions for chromium measurement pyrolysis and atomization curves were built up in different media and employing Pd and HF as chemical modifiers. Also, a detailed study about calibration strategy was performed. At best conditions, pyrolysis and atomization temperatures were 1200 °C and 2600 °C, respectively, and 10 μL of a 500 mg L− 1 Pd solution was added together with 10 μL of a 50% (v/v) HF solution on 20 μL of sample. Obtained results indicate that, in this kind of sample, chromium can be determined by standard addition method or employing external calibration with standard solutions prepared in 0.8 mol L− 1 NaCl medium. In order to evaluate the accuracy of the procedure, a recovery test was performed with seven spiked samples of produced waters. The detection limit, quantification limit and the relative standard deviation in 0.8 mol L− 1 NaCl were also calculated and the values found were 0.45 μg L− 1, 1.5 μg L− 1 and 6.0% (at 2.5 μg L− 1 level), respectively.  相似文献   

3.
A new electroanalytical methodology was developed for the quantification of the phytohormone indole-3-acetic acid (IAA), using a graphite–polyurethane composite electrode (GPU) and the square wave voltammetry (SWV), in 0.1 mol L− 1 phosphoric acid solution (pH 1.6). Analytical curves were constructed under optimized conditions (f = 100 s− 1, a = 50 mV, Ei = 5 mV) and the reached detection and quantification limits were 26 μg L− 1 and 0.2 mg L− 1, respectively. The developed methodology is simple and accurate for the routine determination of IAA. In order to verify the application of the electroanalytical methodology in fortified soil samples without previous treatment, an IAA assay was performed without serious interferences of the soil constituents.  相似文献   

4.
In-capillary derivatization and field-amplified sample injection (FASI) coupled to capillary zone electrophoresis (CZE) was evaluated for the analysis of metals (Co(II), Cu(II), Ni(II), and Fe(II)) using 2-(5-Nitro-2-Pyridylazo)-5-(N-Propyl-N-Sulfopropylamino)Phenol (Nitro-PAPS) as the derivatizing agent. For FASI, the optimum conditions were water as sample solvent, 1 s hydrodynamic injection (0.1 psi) of a water plug, 5 s of electrokinetic introduction (10 kV) of the sample. The in-capillary derivatization was successfully achieved with zone-passing strategy in order tandem injection of Nitro-PAPS reagent (0.5 psi, 7 s), a small water plug (0.1 psi, 1 s), and metal ion introduction (10 kV, 5 s). The solution of 45 mmol L− 1 borate pH 9.7 and 1.0 × 10− 5 mol L− 1 Nitro-PAPS containing 20% acetonitrile was used as the running buffer. The limit of detection obtained by the proposed method was lower than those from pre-capillary derivatization about 3–28 times. The recovery of the method was comparable to pre-capillary derivatization method. In-capillary derivatization-FASI-CZE was applied to analysis of metals in wine samples. The results were compared with those obtained by CZE with pre-capillary derivatization method and atomic absorption spectrometry (AAS).  相似文献   

5.
A molecularly imprinted polymer has been synthesized for a selective on-line catechol extraction, followed by its spectrophotometric determination in guarana powder, mate tea and tap water samples. A clean-up column, containing a methacrylic polymer + C18 solid phase, was also used in order to enhance selectivity. The imprinted polymer was prepared by bulk polymerization using catechol as template and 4-vinylpyridine as the functional monomer. Permanganate solution was used as spectrophotometric reagent, where Mn(VII) was reduced to Mn(II) by catechol in an acid medium, causing color loss, which was monitored at 528 nm. Physical (extraction flow rate, elution flow rate, coil length) and chemical (nature and concentration of the eluent, potassium permanganate concentration) variables were optimized, and the selectivity was appraised using three molecules (4-chloro-2-methylphenol, 2-cresol, 2-methoxyphenol) similar to catechol. These molecules did not present interference in 1:8, 1:10 and 1:10 (catechol/concomitant) proportions, respectively. The analytical calibration curve ranged from 3.0 up to 100 μmol L− 1 (r > 0.999; seven concentrations levels, n = 3) and the limits of detection (LOD) and quantification (LOQ) were 0.8 and 2.7 μmol L− 1, respectively. Precision, expressed as RSD, was of 3.0% (20 μmol L− 1, n = 10), and the analytical frequency was 15 h− 1. Accuracy was checked by the HPLC technique and the results did not present significant difference at 95% confidence levels according to the t test.  相似文献   

6.
The voltammetric behavior of 4-methylbenzelidene camphor (MBC) was studied by square wave voltammetry (SWV) using mercury electrode. The experimental condition that provided the highest peak current with the best reduction signal definition of MBC was found in Britton-Robinson buffer and cationic surfactants, cetyltrimethylammoniun bromide (CTABr). A single peak of MBC reduction was observed at − 1.21 V versus Ag/AgCl. The developed methodology was applied for determination of MBC in commercial sunscreen SPF 15, 20 and 30 and for the simultaneous determination when other protection agents were associated, such as benzophenone-3 (BENZO) and octyl methoxycinammate (OMC). Both methodologies had shown good determination values for the analyzed samples. The calculated detection limit was 2.99 × 10− 9 mol L− 1 and the quantification limit was 9.98 × 10− 9 mol L− 1.  相似文献   

7.
Two greener procedures for flow-injection spectrophotometric determination of nitrite in natural waters were developed and critically compared. Replacement of toxic reagents, waste minimization and treatment were exploited to attend the standards of clean chemistry. The flow system was designed with solenoid micro-pumps in order to minimize reagent consumption and waste generation. The first procedure is based on the Griess diazo-coupling reaction with sulfanilamide and N-(1-naphthyl)ethylenediamine (NED) yielding an azo dye, followed by photodegradation of the low amount of waste generated based on the photo-Fenton reaction. The second procedure is based on the formation of iodine from nitrite and iodide in acid medium in order to avoid the use of toxic reagents. For Griess method, linear response was achieved up to 1.0 mg L− 1, described by the equation A = − 0.007 + 0.460C (mg L− 1), r = 0.999. The detection limit was estimated as 8 μg L− 1 at the 99.7% confidence level and the coefficient of variation was 0.8% (n = 20). The sampling rate was estimated as 108 determinations per hour. The consumption of the most toxic reagent (NED) is reduced 55-fold and 20-fold in comparison to batch method and flow injection with continuous reagent addition, respectively. A colorless residue was obtained by in-line photodegradation with reduction of 87% of the total organic carbon content. The results obtained for natural water samples were in agreement with those achieved by the reference method at the 95% confidence level. For the nitrite–iodide method, linear response was observed up to 2.0 mg L− 1, described by the equation A = − 0.024 + 0.148C (mg L− 1), r = 0.999. The detection limit was estimated as 25 μg L− 1 at the 99.7% confidence level and the coefficient of variation was 0.6% (n = 20). The sampling rate was estimated as 44 determinations per hour. Despite avoiding the use of toxic reagents, the nitrite–iodide method presented worst performance in terms of selectivity and sensitivity.  相似文献   

8.
During oil and gas exploitation, large amounts of produced water are generated. This water has to be analyzed with relation to the chemical composition to deduce the environmental impact of its discharge after a treatment process. Therefore, a study was carried out to evaluate preliminarily the BTEX (benzene, toluene, ethylbenzene and xylenes), polycyclic aromatic hydrocarbons (PAHs) and metals contents in produced water samples taken from effluents of the Bonsucesso treatment plant located in the city of Carmópolis, the most important oil and gas producer in the State of Sergipe, North-east of Brazil. Three methods were optimized to determine the target compounds. Polycyclic aromatic hydrocarbons were determined by gas chromatography with mass spectrometric detection (GC/MS), volatile aromatic hydrocarbons (BTEX) by gas chromatography with photoionization detector (GC/PID) and metals were analyzed by flame atomic absorption spectrometry (FAAS). The results showed that concentrations of the target compounds in these samples ranged from 96.7 to 1397 μg L− 1 for BTEX, from 0.9 to 10.3 μg L− 1 for PAHs and from 0.003 to 4540 mg L− 1 for metals.  相似文献   

9.
Green onions (Allium fistulosum) enriched with 10 or 100 μg mL− 1 Se(IV) or SeMet were analyzed for total selenium and species distribution. Anion and cation exchange chromatographies were applied for the separation of selenium species with mass spectrometric detection. Two different sample preparation methods (NaOH and enzymatic) were compared from the Se extraction efficiency point of view. Total selenium concentration accumulated by the onions reached the 200 μg g− 1 level expressed for dry weight when applying SeMet at a concentration of 100 μg mL− 1 as the source of Se. Speciation studies revealed that both in onion bulbs and leaves the predominant form of organic selenium is Se-methyl-selenocysteine (MeSeCys). When Se(IV) was applied for Se-enrichment at a concentration level of 100 μg mL− 1 both onion leaf and bulb contained a significant amount of inorganic selenium. An unknown compound was also detected.  相似文献   

10.
The present work proposes a direct method based on slurry sampling for the determination of zinc and copper in human hair samples by multi-element sequential flame atomic absorption spectrometry. The slurries were prepared by cryogenic grinding and sonication of the samples. The optimization step was performed using univariate methodology and the factors studied were: nature and concentration of the acid solution, amount sample/slurry volume, sonication time, and particle size. The established experimental conditions are the use of a sample mass of 50 mg, 2 mol L− 1 nitric acid solution, sonication time of 20 min and slurry volume of 10 mL. Adopting the optimized conditions, this method allows the determination of zinc and copper with detection limits of 88.3 and 53.3 ng g− 1, respectively, and precision expressed as relative standard deviation (RSD) of 1.7% and 1.6% (both, n = 10) for contents of zinc and copper of 100.0 and 33.3 μg g− 1, respectively. The accuracy was checked and confirmed by analysis of two certified reference materials of human hair. The procedure was applied for the determination of zinc and copper in two human hair samples. The zinc and copper contents varied from 100.0 to 175.6 and from 3.2 to 32.8 μg g− 1, respectively. These samples were also analyzed after complete digestion in a closed system and determination by FAAS. The statistical comparison by t-test (95% confidence level) showed no significant difference between these results.  相似文献   

11.
In this paper, we described a simple and rapid method, capillary electrophoresis with electrochemiluminescence (CE–ECL) detection using tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+), to simultaneously detect pethidine and methadone. Analytes were injected to separation capillary of 67.5 cm length (25 μm i.d., 360 μm o.d.) by electrokinetic injection for 10 s at 10 kV. Under the optimized conditions: ECL detection at 1.20 V, 30 mM sodium phosphate (pH 6.0) as running buffer, separation voltage at 14.0 kV, 5 mM Ru(bpy)32+ with 50 mM sodium phosphate (pH 6.5) in the detection cell, the linear range from 2.0 × 10− 6 to 2.0 × 10− 5 M for pethidine and 5.0 × 10− 6 to 2.0 × 10− 4 M for methadone and detection limits of 0.5 μM for both of them were achieved (S/N = 3). Relative standard derivations of the ECL intensity were 2.09% and 6.59% for pethidine and methadone, respectively.  相似文献   

12.
The N2 and H2 evolution, respectively, were monitored during deposition of Pd and Cu from electroless plating baths to obtain in-process control of the composition during preparation of 3–7 μm thick PdCu membranes on tubular ceramic substrates. Compositions estimated by gas evolution compare favorably to those measured in post-mortem XRD and EDS analyses, mostly differing by not more than 1 at.%. This result suggests that use of gas evolution measurements to enable in-process control of composition to within 1 at.% is feasible. Annealing experiments in an H2 atmosphere demonstrated that, at 893 K, only 48 h are needed to form a stoichiometrically homogeneous, 9.5 μm thick, face centered cubic (fcc) Pd63Cu37 membrane from sequentially deposited layers; at 723 K, the same transformation requires over 2 weeks. The appearance of transient body centered cubic (bcc) and fcc phases with lower Pd contents signaled compositional segregation in the initial stages of alloy formation at 723 and 773 K and could be a source of persistent stoichiometric heterogeneity particularly in bcc PdCu membranes. The H2 fluxes of fcc Pd58Cu42 and Pd70Cu30 membranes were JH2=(1.6±1.1) mol m−2 s−1 exp[(−24.8±0.4)kJ mol−1/RT] and JH2=(3.7±0.6) mol m−2 s−1 exp[(−21.3±1.0)kJ mol−1/RT], respectively, at 100 kPa H2 pressure difference.  相似文献   

13.
In this paper a simple and highly sensitive electroanalytical method for the determination of caffeine content using 1,4-benzoquinone modified carbon paste electrode is presented. The method is based on suppression of 1,4-benzoquinone peak current on addition of caffeine. Square-wave and cyclic voltammetric techniques were utilised for the investigation. The 1,4-benzoquinone modified electrode exhibited a well-defined peak with reproducible peak current values for repetitive measurements; and showed a decrease in peak current value with an increase in caffeine content. The result revealed two linear range regions between 0 mmol L−1 and 0.5 mmol L−1 and 0.5 mmol L−1 and 8.0 mmol L−1, with detection limits of 0.3 μmol L−1 and 5.1 μmol L−1, respectively. The method was then successfully applied to the determination of caffeine content in coffee samples. The effects of pH, electrode composition, step potential, pulse amplitude and square-wave frequency on the voltammetric responses were also investigated.  相似文献   

14.
The strong cation exchanger Dowex 50W-x4 was used for the enrichment of traces of Cd, Co, Cu, Fe, Ni, Pb and Zn in mineral and mine waters as an alternative to the commonly applied procedures based on the application of chelating resins. The resin used was found suitable for complete retention of these metals both from the solutions of very low pH as well as those close to neutral, thus eliminating the need to buffer the samples. An analytical scheme based on filtration and solid phase extraction with Dowex 50W-x4 was proposed for partitioning Cd, Co, Cu, Fe, Ni and Pb in the examined waters. The fraction of metals associated with the suspended particles was determined after filtration through a 0.45 µm pore size filter and decomposition of the deposited matter. For the evaluation of fractions of the labile metal species and the total dissolved metals, the untreated filtrates and the solutions resulting from their digestion, respectively, were passed through Dowex 50W-x4 cation exchange columns. The retrieval of the metals was completed using a 4.0 mol L−1 solution of HCl. The described metal preconcentration and fractionation protocol offered the enrichment factor of 25 with detection limits equal to 22, 30, 92, 41, 70, 36 and 340 ng L−1, respectively for Cd, Co, Cu, Fe, Ni and Pb. Reasonably good precision and accuracy were attained.  相似文献   

15.
The inhibitory effect of Cd(II), Ni(II), and Zn(II) on the oxidation of 3,3′,5,5′ -tetramethylbenzidine with periodate was detected. The optimum reaction conditions were found, and the procedures were developed for determining 1 × 10−2 to 10 μg/mL Cd(II), Ni(II), and Zn(II) in solution. The indicator reaction was performed on a number of supports. The maximum inhibitory effect was observed on silica gel-based plates for TLC. Procedures for determining 6 × 10−3 to 0.4 μg of these metals were developed. Silica gel plates with the immobilized reagent for cadmium (bromobenzothiazo) were used to preconcentrate cadmium. A selective test procedure was developed for determining 1 × 10−4 −3 × 10−3 μg/mL cadmium with the visual detection of the process rate. Upon the introduction of dimethylglyoxime into the indicator reaction, the inhibitory effect of nickel changed to its promoting effect and the detection limit for nickel was lowered. A procedure was developed for determining 3 × 10−4 −3 × 10−3 μg/mL nickel in solution and 7 × 10−3−4 × 10−1 μg nickel on the surface of Sorbfil plates. An assumption was made about the reasons for the inhibitory effect of metal ions on the oxidation of aryl diamines with periodate.__________Translated from Zhurnal Analiticheskoi Khimii, Vol. 60, No. 6, 2005, pp. 662–669.Original Russian Text Copyright © 2005 by Beklemishev, Kiryushchenkov, Stoyan, Dolmanova.  相似文献   

16.
Surleva AR  Neshkova MT 《Talanta》2008,76(4):914-921
A new flow injection approach to total weak acid-dissociable (WAD) metal–cyanide complexes is proposed, which eliminates the need of a separation step (such as gas diffusion or pervaporation) prior to the detection. The cornerstone of the new methodology is based on the highly selective flow-injection potentiometric detection (FIPD) system that makes use of thin-layer electroplated silver chalcogenide ion-selective membranes of non-trivial composition and surface morphology: Ag2 + δSe1 − xTex and Ag2 + δSe. An inherent feature of the FIP-detectors is their specific response to the sum of simple CN + Zn(CN)42− + Cd(CN)42−. For total WAD cyanide determination, ligand exchange (LE) and a newly developed electrochemical pre-treatment procedure for release of the bound cyanide were used. The LE pre-treatment ensures complete recovery only when the sample does not contain Hg(CN)42−. This limitation is overcome by implementing electrochemical pre-treatment which liberates completely the bound WAD cyanide through cathodic reduction of the complexed metal ions. A complete recovery of toxic WAD cyanide is achieved in the concentration range from 156 μg L−1 up to 13 mg L−1. A three-step protocol for individual and group WAD cyanide speciation is proposed for the first time. The speciation protocol comprises three successive measurements: (i) of non-treated, (ii) LE-exchange pre-treated; (iii) electrochemically pre-treated sample. In the presence of all WAD complexes this procedure provides complete recovery of the total bound cyanide along with its quantitative differentiation into the following groups: (1) Hg(CN)42−; (2) CN + Cd(CN)42− + Zn(CN)42−; (3) Cu(CN)43− + Ni(CN)42− + Ag(CN)2. The presence of a 100-fold excess in total of the following ions: CO32−, SCN, NH4+, SO42− and Cl does not interferes. Thus the proposed approach offers a step ahead to meeting the ever increasing demand for cyanide-species-specific methods. The equipment simplicity makes the procedure a good candidate for implementing in portable devices for in-field cyanide monitoring.  相似文献   

17.
A thermospray flame furnace atomic absorption spectrometer (TS-FF-AAS) was employed for Co determination in biological materials. Cobalt presents a high atomization temperature and consequently poor sensitivity is obtained without changing its thermochemical behavior. The effect of different complexing agents on sensitivity was evaluated based on the formation of Co volatile compounds. A cloud point procedure was optimized for Co preconcentration for further improvement of sensitivity. Samples were treated with 1 mol l− 1 hydrochloric acid solution for quantitative extraction of Co without simultaneous extraction of Fe, since it is a strong interferent. After the extraction and preconcentration steps, a sample volume of 150 μl was introduced into the hot Ni tube using air as carrier at a flow-rate of 0.4 ml min− 1. The best sensitivity was attained using ammonium pyrrolidinedithiocarbamate (APDC) and Triton X-114 was employed for implementation of the cloud point procedure. The detection limit obtained for Co was 2.1 μg l− 1 and the standard deviation was 5.8% for a solution containing 100 μg l− 1 (n = 10). Accuracy was checked using two certified reference materials (tomato leaves and bovine liver) and results were in agreement with certified values at a 95% confidence level. Employing the developed procedure, Co were quantified in different biological materials (plant and animal tissues). The proposed method presents suitable sensitivity for cobalt determination in the quality control of foods.  相似文献   

18.
Quercetin can effectively accumulate at multi-walled carbon nanotubes-paraffin oil paste electrodes (CNTPE) and cause a sensitive anodic peak at around 0.32 V (vs. SCE) in a 0.10 M phosphate buffer solution (pH = 4.0). Under optimized conditions, the anodic peak current is linear to quercetin concentration in the ranges of 2.0 × 10− 9−1.0 × 10− 7 M and 1.0 × 10− 7−2.0 × 10− 5 M, and the regression equations are ip (μA) = 0.0017 + 0.928c (μM, r = 0.999) and ip (μA) = 0.183 + 0.0731c (μM, r = 0.995), respectively. This paste electrode can be regenerated by repetitively cycling in a blank solution for about 2 min. A 1.0 × 10− 6 M quercetin solution is measured for 10 times using the same electrode regenerated after every determination, and the relative standard deviation of the peak current is 1.7%. The method has been applied to the determination of quercetin in hydrolysate product of rutin and the recovery is 99.2–102.6%. In comparison with graphite paste electrode, carbon nanotubes-nujol paste electrode and carbon nanotubes casting film modified glassy carbon electrode, the CNTPE gives higher ratio of signal to background current and better defined voltammetric peak.  相似文献   

19.
A new method was developed for the determination of cadmium in water samples using ionic liquid-based ultrasound-assisted dispersive liquid–liquid microextraction (IL-based USA-DLLME) followed by electrothermal atomic absorption spectrometry (ETAAS). The IL-based USA-DLLME procedure is free of volatile organic solvents, and there is no need for a dispersive solvent, in contrast to conventional DLLME. The ionic liquid, 1-hexyl-3-methylimidazolium hexafluorophosphate (HMIMPF6), was quickly disrupted by an ultrasonic probe for 1 min and dispersed in water samples like a cloud. At this stage, a hydrophobic cadmium–DDTC complex was formed and extracted into the fine droplets of HMIMPF6. After centrifugation, the concentration of the enriched cadmium in the sedimented phase was determined by ETAAS. Some effective parameters of the complex formation and microextraction, such as the concentration of the chelating agent, the pH, the volume of the extraction solvent, the extraction time, and the salt effect, have been optimized. Under optimal conditions, a high extraction efficiency and selectivity were reached for the extraction of 1.0 ng of cadmium in 10.0 mL of water solution employing 73 µL of HMIMPF6 as the extraction solvent. The enrichment factor of the method is 67. The detection limit was 7.4 ng L− 1, and the characteristic mass (m0, 0.0044 absorbance) of the proposed method was 0.02 pg for cadmium (Cd). The relative standard deviation (RSD) for 11 replicates of 50 ng L− 1 Cd was 3.3%. The method was applied to the analysis of tap, well, river, and lake water samples and the Environmental Water Reference Material GSBZ 50009-88 (200921). The recoveries of spiked samples were in the range of 87.2–106%.  相似文献   

20.
5,11,17,23-Tetrakis(1,1-dimethylethyl)-25,26-dihydroxy-27,28-crown-4-calix[4]arene in the cone conformation was synthesized. This p-tert-butylcalix[4]arene-1,2-crown-4 compound was then anchored with Merrifield chloromethylated resin beads. The modified polymeric resin was characterized by 1H NMR, FT-IR and elemental analysis and used successfully for the separation and preconcentration of Cu(II), Cd(II), Co(II), Ni(II) and Zn(II) prior to their determination by FAAS. Effective extraction conditions were optimized in both batch and column methods. The resin exhibits good separating ability with maximum between pH 6.0-7.0 for Cu(II), pH 6.0 for Cd(II), pH 5.0 for Co(II), pH 4.0-4.5 for Ni(II), and pH 4.5 for Zn(II). The elution studies were carried out with 0.5 mol L−1 HCl for Cu(II), Co(II) and Co(II), 1.0 mol L−1 HCl for Cd(II) and Zn(II). The sorption capacity, preconcentration factor and distribution coefficient of each metal ion were determined. The detection limits were 1.10, 1.25, 1.83, 1.68 and 2.01 μg L−1 for Cu(II), Cd(II), Co(II), Ni(II) and Zn(II). The influence of several ions on the resin performance was also investigated. The validity of the proposed method was checked for these metal ions in NIST standard reference material 2709 (San Joaquin Soil) and 2711 (Montana Soil).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号