首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A uniform electric current at infinity was applied to a thin infinite conductor containing an elliptical hole with an edge crack. The electric current gives rise to two states, i.e., uniform and uneven Joule heat. These two states must be considered to analyze the heat conduction problem. The uneven Joule heat gives rise to uneven temperature and thus to heat flux, and to thermal stress.Using a rational mapping function, problems of the electric current, the Joule heat, the temperature, the heat flux, the thermal stress are analyzed, and each of their solutions is obtained as a closed form. The distributions of the electric current, the Joule heat, the temperature, the heat flux and the stress are shown in figures.The heat conduction problem is solved as a temperature boundary value problem. Solving the thermal stress problem, dislocation and rotation terms appear, which complicates this problem. The solutions of the Joule heat, the temperature, the heat flux and the thermal stress are nonlinear in the direction of the electric current. The crack problems are also analyzed, and the singular intensities at the crack tip of each problem are obtained. Mode II (sliding mode) stress intensity factor (SIF) is produced as well as Mode I (opening mode) SIF, for any direction of the electric current. The relations between the electric current density and the melting temperature and between the electric current density and SIF are investigated for some crack lengths in an aluminum plate.  相似文献   

2.
In this paper, a theoretical analysis is presented for magnetohydrodynamic flow of blood in a capillary, its lumen being porous and wall permeable. The unsteadiness in the flow and temperature fields is caused by the time-dependence of the stretching velocity and the surface temperature. Thermal radiation, velocity slip and thermal slip conditions are taken into account. In order to study the flow field as well as the temperature field, the problem is formulated as a boundary value problem consisting of a system of nonlinear coupled partial differential equations. The problem is analysed by using similarity transformation and boundary layer approximation. Solution of the problem is achieved by developing a suitable numerical method and using high speed computers. Computational results for the variation in velocity, temperature, skin-friction co-efficient and Nusselt number are presented in graphical/tabular form. Effects of different parameters are adequately discussed. Since the study takes care of thermal radiation in blood flow, the results reported here are likely to have an important bearing on the therapeutic procedure of hyperthermia, particularly in understanding/regulating blood flow and heat transfer in capillaries.  相似文献   

3.
The paper deals with the axisymmetrical problem of thermoelastic layer with mechanical properties dependent on temperature. The boundary planes of the body are kept at constant but different temperatures. Moreover, the layer is assumed to be ideal fixed to a rigid foundation. The upper boundary plane is loaded by normal forces dependent on the radius. The considered stationary problem is solved according with the following scheme: (10) firstly the distribution of temperature is found, (20) secondly, assuming that the Young modulus is a power function of temperature and Poisson ratio is constant, the displacements and stress are calculated from adequate boundary value problem. The obtained results in the form of Hankel integrals are analysed numerically for the case of linear dependence of Young modulus on the temperature.  相似文献   

4.
A two-dimensional equation of generalized thermoelasticity with one relaxation time in an isotropic elastic medium with the elastic modulus dependent on temperature and with an internal heat source is established using a Laplace transform in time and a Fourier transform in the space variable. The problem for the transforms is solved in the space of states. The problem of heating of the upper and the lower surface of a plate of great thickness by an exponential time law is considered. Expressions for displacements, temperature, and stresses are obtained in the transform domain. The inverse transform is obtained using a numerical method. Results of solving the problem are presented in graphical form. Comparisons are made with the results predicted by the coupled theory and with the case of temperature independence of the elastic modulus.  相似文献   

5.
Algorithm of retrieving the heat transfer coefficient (HTC) from transient temperature measurements is presented. The unknown distributions of two types of boundary conditions: the temperature and heat flux are parameterized using a small number of user defined functions. The solutions of the direct heat conduction problems with known boundary temperature and flux are expressed as a superposition of auxiliary temperature fields multiplied by unknown parameters. Inverse problem is formulated as a least squares fit of calculated and measured temperatures and is cast in a form of a sum of two objective functions. The first results originates from an inverse problem for retrieving the boundary temperature the second comes from the inverse problem for reproducing the boundary heat flux. The final form of the objective function is obtained by enforcing constant in time value of the heat transfer coefficient. This approach leads to substantial regularization of the results, when compared with the standard technique, where HTC is calculated from separately reconstructed temperature and heat flux on the boundary. The validation of the numerical procedure is carried out by reconstructing a known distribution of the HTC using simulated measurements laden by stochastic error. The proposed approach is also used to reconstruct the distribution of the HTC in a physical experiment of heating a cylindrical sample using an impinging jet.  相似文献   

6.
A continuum model for two-phase (fluid/particle) flow induced by natural convection is developed and applied to the problem of steady natural convention flow of a particulate suspension through an infinitely long pipe. The wall of the pipe is maintained at a constant temperature. The particle phase is endowed by an artificial viscosity which may be used to model particle-particle interaction in dension suspensions. Boundary conditions borrowed from rarefied gas dynamics are employed for the particle-phase wall conditions. Closed-form solutions for the velocity and temperature profiles are obtained. For the assumptions employed in the problem, the temperatures of both phases in the pipe are predicted to be uniform. A parametric study of some physical parameters involved in the problem is performed to illustrate the influence of these parameters on the velocity profiles of both the fluid and particle phases.  相似文献   

7.
A comprehensive numerical study has been done to investigate two-dimensional, steady state, conjugate natural heat convection in the hemi spherical lower plenum of a fast breeder reactor under failed conditions. The continuity, momentum and energy equations are solved over the entire domain, using the corresponding properties for the solid and fluid regions. The control volume approach is employed in order to discretize the governing equations for their numerical solution. A parametric study has been done to study the variation of the velocity vectors and isotherms for different constant temperature of the heat source, simulating different heat generation rates. The actual problem in a nuclear reactor involves a volumetric heat generation in the debris falling over the heat shield plate under failed conditions of the reactor and heat is removed by a decay heat exchanger serving as a sink. In this study we have reduced this transient problem to a quasi-steady problem with a prescribed temperature on the heat shield plate. This makes the problem more tractable. The fluid flow pattern, variation of the temperature along the axis in and around the heat source are presented to show the overall heat transfer characteristics inside the plenum.  相似文献   

8.
The thermoelasticity problem in a thick-walled orthotropic hollow cylinder is solved analytically using finite Hankel transform and Laplace transform. Time-dependent thermal and mechanical boundary conditions are applied on the inner and the outer surfaces of the cylinder. For solving the energy equation, the temperature itself is considered as boundary condition to be applied on both the inner and the outer surfaces of the orthotropic cylinder. Two different cases are assumed for solving the equation of motion: traction–traction problem (tractions are prescribed on both the inner and the outer surfaces) and traction–displacement (traction is prescribed on the inner surface and displacement is prescribed on the outer surface of the hollow orthotropic cylinder). Due to considering uncoupled theory, after obtaining temperature distribution, the dynamical structural problem is solved and closed-form relations are derived for radial displacement, radial and hoop stress. As a case study, exponentially decaying temperature with respect to time is prescribed on the inner surface of the cylinder and the temperature of the outer surface is considered to be zero. Owing to solving dynamical problem, the stress wave propagation and its reflections were observed after plotting the results in both cases.  相似文献   

9.
The problem of the distribution of contact stresses resulting from the interaction between a journal and its bearing was considered in [1]. This paper deals with the problem of temperature distribution in the area of contact of a rotating cylindrical shaft and a bearing. The process is assumed to be stabilized.The problem reduces to an integral equation with respect to the contact temperature at the shaft surface.An approximate method is proposed for solving the integral equation which had permitted the derivation of a simple approximate formula for the contact temperature within any range of variation of the parameters of this problem.  相似文献   

10.
The effect of a radial temperature gradient on stability of steady-state flow of a viscous liquid between two solid concentric cylinders both rotating in the same direction is considered. The linear stability problem is considered in the Boussinesq approximation. Sufficient stability and instability conditions for the flow relative to rotationally symmetric perturbation are obtained. Neutral curves are computed for a wide range of problem parameters.  相似文献   

11.
12.
The point explosion problem with internal heat transfer effects taken into account is analysed. The classical inviscid solutions to this problem yield a non-physical phenomenon of infinite temperature and zero density at the center of explosion for all times. With heat transfer fluxes considered, the solution near the center of symmetry is improved and finite values for temperature are obtained. The non-self-similar solution of the problem is based on the quasi-similar approximate technique which reduces the non-linear partial differential equations governing the problem to ordinary differential ones. However, this formulation yields a two-point boundary-value problem. To facilitate the integration, the flow field is first divided into two regions: an outer inviscid region and an inner region where dissipation effects are manifested. This results in two sets of ordinary differential equations expressing the conservation equations in the inner and outer regions which are then solved and matched together to yield the composite solution. Secondly, the problem is then transformed into an initial-value one. Using the results of the composite solution, the governing equations can be integrated directly from the center until the shock front. The structure of the non-self-similar flow fields with internal heat transfer effects is then fully determined for specified values of the heat transfer parameters.  相似文献   

13.
The problem of condensation by mixed convection in a vertical channel has been numerically analyzed for an air water system. The plates of the channel are subjected to uniform but different heat fluxes. The effects of ambient conditions on the condensation process are investigated. The results show particularly the existence of a particular temperature called inversion temperature for condensation. This temperature is defined as the temperature above it the condensation rate is higher for a lower vapor concentration. It was found that this temperature increases with the increase of the ambient pressure and decreases with the cooling heat flux.  相似文献   

14.
This paper presents the problem of thermoelastic interactions in an elastic infinite medium with cylindrical cavity at an elevated temperature field arising out of a ramp-type heating and loading bounding surface of the cavity, and the surface is assumed initially quiescent. The governing equations are taken in a unified system from which the field equations for coupled thermoelasticity as well as for generalized thermoelasticity can be easily obtained as particular cases. Due attention has been paid to the finite time of rise of temperature, stress, displacement, and strain. The problem has been solved analytically using a direct approach. The derived analytical expressions have been computed for a specific situation. Numerical results for the temperature distribution, thermal stress, displacement, and strain are represented graphically. A comparison is made with the results predicted by the three theories.  相似文献   

15.
An exact solution for the fluid temperature due to laminar heat transfer in parallel plate flow is found. The formulas obtained are valid for an arbitrary velocity profile. The basic problem encountered involves finding certain expansion coefficients in a series of nonorthogonal eigenfunctions. This problem is solved by passing to a vector system of equations having orthogonal eigenvectors. The method is applicable to more general problems.  相似文献   

16.
The article deals with nonlinear thermal instability problem of double-diffusive convection in a porous medium subjected to temperature/gravity modulation. Three types of imposed time-periodic boundary temperature (ITBT) are considered. The effect of imposed time-periodic gravity modulation (ITGM) is also studied in this problem. In the case of ITBT, the temperature gradient between the walls of the fluid layer consists of a steady part and a time-dependent periodic part. The temperature of both walls is modulated in this case. In the problem involving ITGM, the gravity field has two parts: a constant part and an externally imposed time-periodic part. Using power series expansion in terms of the amplitude of modulation, which is assumed to be small, the problem has been studied using the Ginzburg–Landau amplitude equation. The individual effects of temperature and gravity modulation on heat and mass transports have been investigated in terms of Nusselt number and Sherwood number, respectively. Further the effects of various parameters on heat and mass transports have been analyzed and depicted graphically.  相似文献   

17.
The cavitation problem of a composite ball under a uniform temperature is investigated, and the ball is composed of two elastic solid materials. The nonlinear mathematical model of the problem is established with the finite logarithmic strain measure for a large geometric deformation and by the Hooke law for elastic materials. The analytic solutions in a parametric form are derived for the thermal dilatation of the composite ball with a large elastic deformation. Solution curves are given to describe the variations of the critical temperature in the cavitation with the geometric and material parameters. The bifurcation curve is also given to reveal the cavity growth after void nucleation. The numerical results for a computational example indicate that the radius of the cavity will rapidly grow above the critical temperature, and the loop stress will become infinite when void nucleation. This means that the materials near the cavity will produce a plastic deformation leading to local failure and fracture if the material of the internal ball is elastoplastic. In addition, the cavitation of the composite ball appears at a low temperature if the elastic property of the material of the internal ball is nearly uncompressible.  相似文献   

18.
The inverse problem of determining time-variable surface heat flux in a plane wall, with constant or temperature dependent thermal properties, is numerically studied. Different kinds of incident heat flux, including rectangular waveform, are assumed. The solution is numerically solved as a function estimation problem, so that no a priori information for the functional waveforms of the unknown heat flux is needed. In all cases, a solution in the form of a piece-wise function is used to approach the incident flux. Transient temperature measurements at the boundary, from the solution of the direct problem, served as the simulated experimental data needed as input for the inverse analysis. Both direct and inverse heat conduction problems are solved using the network simulation method. The solution is obtained step-by-step by minimising the classical functional that compares the above input data with those obtained from the solution of the inverse problem. A straight line of variable slope and length is used for each one of the stretches of the desired solution. The influence of random error, number of functional terms and the effect of sensor location are studied. In all cases, the results closely agree with the solution.  相似文献   

19.
Solutions of the heat capacity versus temperature in a one-dimensional slab have been studied for different types of dependency (lineal, sinusoidal, piece-wise and rectangular) under boundary conditions of natural and forced convection on both sides of the slab. The input data of this inverse problem are the temperature history ("measurements") at a particular location within the slab, obtained by adding a specified random error to the set of temperatures which are the solution of the direct problem. No prior information is used as regards the temperature-dependent functional forms of the unknown heat capacity. In all cases, a piece-wise function is used to approach the solution. Using a programming routine that minimises a classical predefined functional, successive stretches of this piece-wise function are obtained step by step by (i) fixing its length and (ii) increasing or decreasing its slope. The Network Simulation Method is used to solve both the direct and inverse problems. No mathematical manipulations of the finite-difference differential equations are required by the programmer, since they are contained in the computer code used in the method. The basic network for the inverse problem, which is basically the same as for the direct problem, is easy to design and has very few devices. Several examples are shown to prove the accuracy and effectiveness of the proposed method.  相似文献   

20.
热流密度点测量结果并不能完全反映详细的热流分布特征, 尤其是针对热流梯度较大、热流分布复杂的区域, 需要热流密度场测量技术以获取全场精细的热流分布特征. 应用温敏漆测量热流密度场的方法得到了广泛应用, 但实验条件来流总温较低, 与真实飞行环境存在明显差异, 真实飞行条件下的辐射效应严重限制了温敏漆技术的应用. 针对高超声速高焓条件下缺乏热流密度场测量方法的难题, 提出了内嵌式温敏漆测量方法, 基本思想是利用温敏漆测量内壁面温度的变化历程结合热传导反问题的求解确定热流密度. 本文详细介绍了内嵌式温敏漆测量方法的测量原理、测量系统构成、数据处理方法、设计原则及该测量方法的优势. 针对高超声速风洞实验中常见的阶跃、线性和局部突变等热流密度分布进行了数值验证, 验证了内嵌式温敏漆测量方法的可行性, 并分析了风洞实验温度测量精度及噪声对测量结果的影响. 内嵌式温敏漆测量方法可用于测量高超声速真实飞行环境下细致的气动热特征, 扩展了温敏漆测量方法的应用范围, 解决了高超声速高焓条件下缺乏热流密度场测量方法的难题.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号