首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laser desorption/ionization mass spectrometry (LDI-MS) on porous silicon is a promising analytical strategy for the rapid detection of metabolites in biological matrices. We show that both oxidized and unoxidized porous silicon surfaces are useful in detecting protonated/deprotonated molecules from compounds when analyzed in mixtures. We demonstrate the feasibility of using this technique for the simultaneous detection of multiple analytes using a synthetic cocktail of 30 compounds commonly associated with prokaryotic and eukaryotic primary metabolism. The predominantly detected species were the protonated molecules or their sodium/potassium adducts in the positive-ion mode and the deprotonated molecules in the negative-ion mode, as opposed to fragments or other adducts. Surface oxidation appears to influence mass spectral responses; in particular, in the mixture we studied, the signal intensities of the hydrophobic amino acids were noticeably reduced. We show that whilst quantitative changes in individual analytes can be detected, ion suppression effects interfere when analyte levels are altered significantly. However, the response of most analytes was relatively unaffected by changes in the concentration of one of the analytes, so long as it was not allowed to dominate the mixture, which may limit the dynamic range of this approach. The differences in the response of the analytes when analyzed in mixtures could not be accounted for by considering their gas-phase and aqueous basicities alone. The implications of these findings in using the technique for metabolome analyses are discussed.  相似文献   

2.
Speed and accuracy are crucial prerequisites in the application of proteomic methods to clinical medicine. We describe a microfluidic-based nanovial array for rapid proteolytic processing linked to MALDI-TOF MS. This microscale format consumes only minute amounts of sample, and it is compatible with rapid bioanalytical protocols and high-sensitivity readouts. Arrays of vials (300 microm in diameter and 25 microm deep), isotropically etched in silicon wafers were electrochemically porosified. Automated picoliter microdispensing was employed for precise fluid handling in the microarray format. Vials were prefilled with trypsin solution, which was allowed to dry. Porosified and nonporosified nanovials were compared for trypsin digestion and subsequent MS identification of three model proteins: lysozyme, alcohol dehydrogenase, and serum albumin at levels of 100 and 20 fmol. In an effort to assess the rapid digestion platform in a context of putative clinical applications, two prostate cancer biomarkers, prostate-specific antigen (PSA) and human glandular kallikrein 2 (hK2), were digested at levels of 100 fmol (PSA), 20 fmol (PSA) and 8 fmol (hK2). All biomarker digestions were completed in less than 30 s, with successful MS identification in the porous nanovial setting.  相似文献   

3.
Desorption/ionization on silicon (DIOS) mass spectra of model ionic dyes methylene blue (MB+Cl?) and methyl orange (Na+MO?) were studied using p+ type‐derived porous silicon (PS) free layers. As‐prepared PS (PS‐H), the PS thermally oxidized at 300 °C (PS‐OX), PS with chemically grafted cation‐exchanging alkylsulfonic acid (PS‐SO3H) and anion‐exchanging propyl‐octadecyldimethylammonium chloride (PS‐ODMA+Cl?) groups was tested as ionization platforms. Two mechanisms of the methylene blue desorption/ionization were found: (1) the formation of [MB + H]+? ion due to the reduction/protonation of MB+, which is predominant for PS‐H and PS‐OX platforms and (2) direct thermal desorption of the MB+ cation, prevailing for PS‐SO3H. The fragmentation of the cation is significantly suppressed in the latter case. The samples of PS‐SO3H and PS‐ODMA+ Cl? efficiently adsorb the dyes of the opposite charge from their solutions via the ion‐exchange. Consequent DIOS MS studies allow to detect only low fragmented ions (MB+ and MO?, respectively), demonstrating the potential of the ion‐exchange adsorption combined with DIOS MS for the analysis of ionic organic compounds in solutions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Tsao CW  Lin CH  Cheng YC  Chien CC  Chang CC  Chen WY 《The Analyst》2012,137(11):2643-2650
Matrix-assisted laser desorption/ionization mass spectrometry is an established soft ionization method that is widely applied to analyze biomolecules. The UV-absorbing organic matrix is essential for biomolecule ionization; however, it also creates matrix background interference, which results in problematic analyses of biomolecules of less than 700 Da. Therefore, this study investigates hydrophilic, hydrophobic cationic, anionic and immobilized metal ion surface chemical modifications to advance nanostructured silicon mass spectrometry performance (nSi-MS). This investigation provides information required for a possible novel mass spectroscopy that combines surface-enhanced and nanostructured silicon surface-assisted laser desorption/ionization mass spectrometry for the selective detection of specific compounds of a mixture.  相似文献   

5.
This study focuses on porous silicon (pSi) fabrication methods and properties for desorption ionization on silicon mass spectrometry (DIOS-MS). PSi was prepared using electrochemical etching of n-type silicon in HF-ethanol solution. Porous areas were defined by a double-sided illumination arrangement: front-side porous areas were masked by a stencil mask, eliminating the need for standard photolithography, and backside illumination was used for the backside ohmic contact. Backside illumination improved the uniformity of the porosified areas. Porosification conditions, surface derivatizations and storage conditions were explored to optimize pSi area, pore size and pore depth. Chemical derivatization of the pSi surfaces improved the DIOS-MS performance providing better ionization efficiency and signal stability with lower laser energy. Droplet spreading and drying patterns on pSi were also examined. Pore sizes of 50-200 nm were found to be optimal for droplet evaporation and pore filling with the sample liquid, as measured by DIOS efficiency. With DIOS, significantly better detection sensitivity was obtained (e.g. 150 fmol for midazolam) than with desorption ionization from a standard MALDI steel plate without matrix addition (30 pmol for midazolam). Also the noise that disturbs the detection of low-molecular weight compounds at m/z < 500 with MALDI could be clearly reduced with DIOS. Low background MS spectra and good detection sensitivity at the 100-150 fmol level for pharmaceutical compounds were achieved with DIOS-MS.  相似文献   

6.
Porous silicon powder and silica gel particles have been applied as inorganic matrices for the analysis of small molecules in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOFMS). In contrast to conventional MALDI-TOFMS, the signal interference of low-molecular analytes by the matrix has been eliminated. Almost no fragmentations of the analytes were observed. Effects of various factors, such as the particle and pore size, the suspending solution, and sample preparation procedures, on the intensity of mass spectra have been investigated. The pore structure of the inorganic matrix and penetration of the analytes into the pores must be optimized for effective desorption and ionization of the analytes. Matrices (DHB and HCCA) were covalently bound to silica gel for improvement of spectrum intensity. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
8.
The performance of nanoporous silicon (pSi) and ultra-thin layer chromatography (UTLC) plates as surfaces for desorption electrospray ionization (DESI) was compared with that of polymethyl methacrylate (PMMA) and polytetrafluoroethylene (PTFE), both popular surfaces in previous DESI studies. The limits of detection (LODs) and other analytical characteristics for six different test compounds were determined using all four surfaces. The LODs for the compounds were in the fmol-pmol (pg-ng) range. The LODs with the pSi surface were further improved for each of the compounds when heat was applied to the surface during sample application which gave LODs as low as or lower than those achieved with PMMA and PTFE. The UTLC plates were successfully used as a rapid means of chromatographic separation prior to DESI-MS analysis. Another advantage achieved using the newer pSi and UTLC surfaces was increased speed of analysis, associated with drying of solution-phase samples. This took place immediately at the UTLC surface and it could be achieved rapidly by gently heating the pSi surface. The presence of salts in the sample did not cause suppression of the analyte signal with any of the surfaces.  相似文献   

9.
The demand for analysis of oral fluid for illicit drugs has arisen with the increased adoption of roadside testing, particularly in countries where changes in legislation allow random roadside testing of drivers for the presence of a palette of illicit drugs such as methamphetamine (MA), 3,4‐methylenedioxymethamphetamine (MDMA) and Δ9‐tetrahydrocannabinol (THC). Oral samples are currently tested for such drugs at the roadside using an immunoassay‐based commercial test kit. Positive roadside tests are sent for confirmatory laboratory analysis, traditionally by means of gas chromatography/mass spectrometry (GC/MS). We present here an alternative rapid analysis technique, porous silicon assisted laser desorption/ionization time‐of‐flight mass spectrometry (pSi LDI‐MS), for the high‐throughput analysis of oral fluids. This technique alleviates the need for sample derivatization, requires only sub‐microliter sample volumes and allows fast analysis (of the order of seconds). In this study, the application of the technique is demonstrated with real samples from actual roadside testing. The analysis of oral samples resulted in detection of MA and MDMA with no extraction and analysis of THC after ethyl acetate extraction. We propose that, subject to miniaturization of a suitable mass spectrometer, this technique is well suited to underpin the deployment of oral fluid testing in the clinic, workplace and on the roadside. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Desorption/ionization on porous silicon (DIOS) is a very useful technique in the case of small molecular weight compounds, compared to the matrix-assisted laser desorption ionization (MALDI). This is because MALDI generates matrix-related ions that overlap with the mass range of interest. The aim of our work was to investigate the suitability of the DIOS technique in the case of fatty acids in negative ion mode. The analysis of the chosen fatty acid models, nonadecanoic acid (C(19)H(38)O(2)) and heneicosanoic acid (C(21)H(42)O(2)), gave rise to the observation of the deprotonated monomeric species and selective cationized multimeric species. This cation selectivity was further elucidated by complementary studies based on the addition of various metals such as Ag(I), Zn(II), Fe(II), and also Cu(II). Specific behavior, depending upon the introduced metal, was highlighted by different redox reaction processes and also metastable decompositions (in PSD mode).  相似文献   

11.
12.
Desorption/ionization on porous silicon (DIOS) is a form of laser desorption mass spectrometry that allows for the direct mass analysis of a variety of analytes without the addition of organic matrix. Protocols are described for the direct analysis of exocrine tissue and single neurons using DIOS-MS. The atrial gland of Aplysia californica was blotted on to porous silicon and analyzed with DIOS-MS in the range m/z 1000-4000. The ability to culture invertebrate neurons directly on porous silicon is also presented. Isolated bag cells regenerated neuronal processes in culture on porous silicon. DIOS-MS allowed the direct detection of the peptides contained in individual cultured neurons indicating that with appropriate protocols, DIOS can be used with biological samples with considerable thickness.  相似文献   

13.
Surface modification of silicon wafers by anodic etching in hydrofluoric acid results in the formation of porous silicon layers consisting of nanocrystallites covered with SiH bonds. A combination of high resolution Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) and Fourier Transform Infrared Spectroscopy (FT-IR) was used to study the surface chemistry of this new material.  相似文献   

14.
Cheng YC  Chen KH  Wang JS  Hsu WL  Chien CC  Chen WY  Tsao CW 《The Analyst》2012,137(3):654-661
This study developed a rapid, sensitive, and matrix-free method for the determination of amphetamine (AMP), methamphetamine (MA), codeine (COD), morphine (MOR), and ketamine (KET) using nanostructured silicon surface assisted laser desorption/ionization mass spectrometry (nSi-MS). The nanostructured silicon (nSi) chip used in this study was created by employing the metal-assisted etching process. Drug standard tests were applied to the nSi chip platform to evaluate the nSi-MS performance, including detection sensitivity, limit of detection, linearity, and repeatability. Real urine samples obtained from drug addict detainees were directly applied to the nSi chip for drug analysis. By observing the nSi-MS spectra, the target drug peaks can be identified; and an antibody pull-down assay was performed to confirm the specificity of the detected targets. nSi-MS drug quantification was assayed, yielding comparable results with those from using the GC-MS approach. The advantages of applying nSi-MS to analyze AMP, MA, COD, MOR, and KET in the urine of addicts are simple, extremely small urine volumes (~10 μL), and a fast analysis procedure (<15 minutes).  相似文献   

15.
The effect of gaseous and liquid nitrogen dioxide on the composition and electronic properties of porous silicon (PS) is investigated by means of optical spectroscopy and electron paramagnetic resonance. It is detected that the interaction process is weak and strong forms of chemisorption on the PS surface, and the process may be regarded as an actual chemical reaction between PS and NO(2). It is found that NO(2) adsorption consists in forming different surface nitrogen-containing molecular groups and dangling bonds of Si atoms (P(b)-centers) as well as in oxidizing and hydrating the PS surface. Also observed are the formation of ionic complexes of P(b)-centers with NO(2) molecules and the generation of free charge carriers (holes) in the volume of silicon nanocrystals forming PS.  相似文献   

16.
Ionized products of desorption of biologically active amino compounds (1,1-dimethylhydrazine, diglycine, tyrosine, and tryptophan) from the surface of a modified mineral (shungite-III, Karelia) have been investigated by laser desorption/ionization mass spectrometry methods (MALDI and SALDI). The composition of the ionized products of laser desorption of amino acids from the surface of nanodispersed shungite is almost independent of carbon content in shungite. The comparative analysis of ionized organic compounds desorbed from the surfaces of shungite and carbon black has led to the suggestion that the decomposition and surface transformation of 1,1-dimethylhydrazine molecules mainly occur on the inorganic components of shungite.  相似文献   

17.
Iminodiacetic acid (IDA)-1,2-epoxy-9-decene has been synthesized and covalently linked to the surface of porous silicon wafer through a photochemical reaction. The negatively charged carboxylic acid groups on the porous silicon wafer are capable of binding oppositely charged species from sample solutions through electrostatic interactions. This allows the removal of contaminants prior to matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) by simply washing the porous silicon surface. The carboxylic acid end groups on porous silicon can be used to selectively bind and concentrate target species in sample solutions. Furthermore, Fe(3+)-IDA-derivatized porous silicon was prepared to specifically and effectively concentrate phosphopeptides from the tryptic digests of phosphoproteins, followed by MALDI-MS analysis.  相似文献   

18.
Summary Spark source mass spectrometry (SSMS) is used to analyze metallurgical grade silicon powder which has been submitted to different purification steps. The principal advantage of this method in comparison to other analytical methods is the broad range of impurity elements detected simultaneously in each analysis. The silicon powder is mixed with gallium in a weight-ratio of 51 and pressed in a moulding die to solid rods. Detection limits are in the range of 0.02–1 ppma with the exception of some few elements contained in the gallium or introduced during sample preparation. By using self-prepared standards relative sensitivity factors for 35 impurity elements have been determined to enhance the accuracy of the results. Concentration values for most elements are expected to be accurate within a factor of 2. As an example the results of SSMS-measurements referring to one special purification step (acid-treatment) are shown.This paper was originally presented at the 1980 Spring Meeting of The Electrochemical Society, held in St. Louis, Missouri  相似文献   

19.
The possibilities of laser mass spectrometry in determining the main composition of silicon carbonitride films (SiC x N y ) deposited on a substrate made of germanium and gallium arsenide are considered. The conditions of laser sampling were selected and the instrument was adjusted to identify the major components of films synthesized by the plasma deposition. The instrument was calibrated by neat silicon compounds to obtain quantitative data on the concentrations of carbon, nitrogen, oxygen, and silicon. A calibration method was proposed, and the concentration of hydrogen in the layers of silicon carbonitride was estimated.  相似文献   

20.
The process of calcium ionization on a rhenium filament was studied at different heating conditions of the evaporation filament (EF) loaded with a CaI2 sample. The analysis indicated that three different ionization processes are involved in the ionization; (1) CaI2 → Ca+, (2) CaI → Ca+, and (3) Ca → Ca+. Reaction (1) appears at the low temperatures of EF, reaction (2) is dominant in the medium temperature region, and reaction (3) appears at the high temperature of EF. These facts suggest that the EF assists the dissociation of CaI2. Experiments are extended to the isotopic ratio measurement using different materials of Ta, Re, and Pt for the evaporation filament.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号