首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The title compound [2,6-Mes(2)C(2)H(3)](2)Ga(+)Li[Al(OCH(CF(3))(2))(4)](2)(-), 1, containing a linear two-coordinate gallium cation, has been obtained by metathesis reaction of [2,6-Mes(2)C(2)H(3)](2)GaCl with 2 equiv of Li[Al(OCH(CF(3))(2))(4)] in C(6)H(5)Cl solution at room temperature. Compound 1 has been characterized by (1)H, (13)C((1)H), (19)F, and (27)Al NMR spectroscopy and X-ray crystallography. Compound 1 consists of isolated [2,6-Mes(2)C(6)H(3)](2)Ga(+) cations and Li[Al(OCH(CF(3))(2))(4)](2)(-) anions. The C-Ga-C angle is 175.69(7) degrees, and the Ga-C distances are 1.9130(14) and 1.9145(16) A. The title compound is remarkably stable, is only a weak Lewis acid, and polymerizes cyclohexene oxide.  相似文献   

2.
To compare the ligand-based reduction chemistry of (EPh)(-) ligands in a metallocene environment to the sterically induced reduction chemistry of the (C(5)Me(5))(-) ligands in (C(5)Me(5))(3)Sm, (C(5)Me(5))(2)Sm(EPh) (E = S, Se, Te) complexes were synthesized and treated with substrates reduced by (C(5)Me(5))(3)Sm: cyclooctatetraene; azobenzene; phenazine. Reactions of PhEEPh with (C(5)Me(5))(2)Sm(THF)(2) and (C(5)Me(5))(2)Sm produced THF-solvated monometallic complexes, (C(5)Me(5))(2)Sm(EPh)(THF), and their unsolvated dimeric analogues, [(C(5)Me(5))(2)Sm(mu-EPh)](2), respectively. Both sets of the paramagnetic benzene chalcogenolate complexes were definitively identified by X-crystallography and form homologous series. Only the (TePh)(-) complexes show reduction reactivity and only upon heating to 65 degrees C.  相似文献   

3.
X-ray crystal structures are reported for the following complexes: [Ru(2)Cl(3)(tacn)(2)](PF(6))(2).4H(2)O (tacn = 1,4,7-triazacyclononane), monoclinic P2(1)/n, Z = 4, a = 14.418(8) ?, b = 11.577(3) ?, c = 18.471(1) ?, beta = 91.08(5) degrees, V = 3082 ?(3), R(R(w)) = 0.039 (0.043) using 4067 unique data with I > 2.5sigma(I) at 293 K; [Ru(2)Br(3)(tacn)(2)](PF(6))(2).2H(2)O, monoclinic P2(1)/a, Z = 4, a = 13.638(4) ?, b = 12.283(4) ?, c = 18.679(6) ?, beta = 109.19(2) degrees, V = 3069.5 ?(3), R(R(w)) = 0.052 (0.054) using 3668 unique data with I > 2.5sigma(I) at 293 K; [Ru(2)I(3)(tacn)(2)](PF(6))(2), cubic P2(1)/3, Z = 3, a = 14.03(4) ?, beta = 90.0 degrees, V = 2763.1(1) ?(3), R (R(w)) = 0.022 (0.025) using 896 unique data with I > 2.5sigma(I) at 293 K. All of the cations have cofacial bioctahedral geometries, although [Ru(2)Cl(3)(tacn)(2)](PF(6))(2).4H(2)O, [Ru(2)Br(3)(tacn)(2)](PF(6))(2).2H(2)O, and [Ru(2)I(3)(tacn)(2)](PF(6))(2) are not isomorphous. Average bond lengths and angles for the cofacial bioctahedral cores, [N(3)Ru(&mgr;-X)(3)RuN(3)](2+), are compared to those for the analogous ammine complexes [Ru(2)Cl(3)(NH(3))(6)](BPh(4))(2) and [Ru(2)Br(3)(NH(3))(6)](ZnBr(4)). The Ru-Ru distances in the tacn complexes are longer than those in the equivalent ammine complexes, probably as a result of steric interactions.  相似文献   

4.
Wu Y  Bensch W 《Inorganic chemistry》2007,46(15):6170-6177
The reactions of Ti with in situ formed polythiophosphate fluxes of A(2)S(3) (A = Rb, Cs), P(2)S(5), and S at 500 degrees C result in the formation of two new quaternary titanium thiophosphates with compositions Rb(3)Ti(3)(P(4)S(13))(PS(4))(3) (1) and Cs(2)Ti(2)(P(2)S(8))(PS(4))(2) (2). Rb(3)Ti(3)(P(4)S(13))(PS(4))(3) (1) crystallizes in the chiral hexagonal space group P6(3) (No. 173) with lattice parameters a = 18.2475(9) Angstrom, c = 6.8687(3) Angstrom, V = 1980.7(2) Angstrom(3), Z = 2. Cs(2)Ti(2)(P(2)S(8))(PS(4))(2) (2) crystallizes in the noncentrosymmetric monoclinic space group Cc (No. 9) with a = 21.9709(14) Angstrom, b = 6.9093(3) Angstrom, c = 17.1489(10) Angstrom, beta = 98.79(1) degrees, V = 2572.7(2) Angstrom(3), Z = 4. In the structure of 1 TiS(6) octahedra, three [PS(4)] tetrahedra, and the hitherto unknown [P(4)S(13)](6-) anion are joined to form two different types of helical chains. These chains are connected yielding two different helical tunnels being directed along [001]. The tunnels are occupied by the Rb+ ions. The [P(4)S(13)](6-) anion is generated by three [PS(4)] tetrahedra sharing corners with one [PS(4)] group in the center of the starlike anion. The P atoms of the three [PS(4)] tetrahedra attached to the central [PS(4)] group define an equilateral triangle. The [P(4)S(13)](6-) anion may be regarded as a new member of the [P(n)S(3n+1)]((n+2)-) series. The structure of Cs(2)Ti(2)(P(2)S(8))(PS(4))(2) (2) consists of the one-dimensional polar tunnels containing the Cs(+) cations. The rare [P(2)S(8)](4-) anion which is composed of two [PS(4)] tetrahedra joined by a S(2)(2-) anion is a fundamental building unit in the structure of 2. One-dimensional undulated chains being directed along [100] are joined by [PS(4)] tetrahedra to form the three-dimensional network with polar tunnels running along [010]. The compounds are characterized with IR, Raman spectroscopy, and UV/vis diffuse reflectance spectroscopy.  相似文献   

5.
A method for the synthesis of the multicomponent ionic complexes: [Cr(I)(C(6)H(6))(2) (.+)][Co(II)(tpp)(fullerene)(-)].C(6)H(4)Cl(2), comprising bis(benzene)chromium (Cr(C(6)H(6))(2)), cobalt(II) tetraphenylporphyrin (Co(II)(tpp)), fullerenes (C(60), C(60)(CN)(2), and C(70)), and o-dichlorobenzene (C(6)H(4)Cl(2)) has been developed. The monoanionic state of the fullerenes has been proved by optical absorption spectra in the UV/vis/NIR and IR ranges. The crystal structures of the ionic [[Cr(I)(C(6)H(6))(2)](.+)](1.7)[[Co(II)(tpp)(C(60))](2)](1.7-). 3.3 C(6)H(4)Cl(2) and [[Cr(I)(C(6)H(6))(2)] (.+)](2)[Co(II)(tpp)[C(60)(CN)(2)]](-)[C(60)(CN)(2) (.-)]).3 C(6)H(4)Cl(2) are presented. The essentially shortened Co.C(fullerene) bond lengths of 2.28-2.32 A in these complexes indicate the formation of sigma-bonded [Co(II)(tpp)][fullerene](-) anions, which are diamagnetic. All the ionic complexes are semiconductors with room temperature conductivity of 2 x 10(-3)-4 x 10(-6) S cm(-1), and their magnetic susceptibilities show Curie-Weiss behavior. The neutral complexes of Co(II)(tpp) with C(60), C(60)(CN)(2), C(70), and Cr(0)(C(6)H(6))(2), as well as the crystal structures of [Co(II)(tpp)](C(60)).2.5 C(6)H(4)Cl(2), [Co(II)(tpp)](C(70)). 1.3 CHCl(3).0.2 C(6)H(6), and [Cr(0)(C(6)H(6))(2)][Co(II)(tpp)] are discussed. In contrast to the ionic complexes, the neutral ones have essentially longer Co.C(fullerene) bond lengths of 2.69-2.75 A.  相似文献   

6.
The first example of a mononuclear diphosphanidoargentate, bis[bis(trifluoromethyl)phosphanido]argentate, [Ag[P(CF(3))(2)](2)](-), is obtained via the reaction of HP(CF(3))(2) with [Ag(CN)(2)](-) and isolated as its [K(18-crown-6)] salt. When the cyclic phosphane (PCF(3))(4) is reacted with a slight excess of [K(18-crown-6)][Ag[P(CF(3))(2)](2)], selective insertion of one PCF(3) unit into each silver phosphorus bond is observed, which on the basis of NMR spectroscopic evidence suggests the [Ag[P(CF(3))P(CF(3))(2)](2)](-) ion. On treatment of the phosphane complexes [M(CO)(5)PH(CF(3))(2)] (M = Cr, W) with [K(18-crown-6)][Ag(CN)(2)], the analogous trinuclear argentates, [Ag[(micro-P(CF(3))(2))M(CO)(5)](2)](-), are formed. The chromium compound [K(18-crown-6)][Ag[(micro-P(CF(3))(2))Cr(CO)(5)](2)] crystallizes in a noncentrosymmetric space group Fdd2 (No. 43), a = 2970.2(6) pm, b = 1584.5(3) pm, c = 1787.0(4), V = 8.410(3) nm(3), Z = 8. The C(2) symmetric anion, [Ag[(micro-P(CF(3))(2))Cr(CO)(5)](2)](-), shows a nearly linear arrangement of the P-Ag-P unit. Although the bis(pentafluorophenyl)phosphanido compound [Ag[P(C(6)F(5))(2)](2)](-) has not been obtained so far, the synthesis of its trinuclear counterpart, [K(18-crown-6)][Ag[(micro-P(C(6)F(5))(2))W(CO)(5)](2)], was successful.  相似文献   

7.
We have synthesized a new series of chromium-group 15 dihydride and hydride complexes [H(2)As(Cr(CO)(5))(2)](-) (1) and [HE(Cr(CO)(5))(3)](2)(-) (E = As, 2a; E = Sb, 2b), which represent the first examples of group 6 complexes containing E-H fragments. The contrasting chemical reactivity of 2a and 2b with organic halogen derivatives is demonstrated. The reaction of 2a with RBr (R = PhCH(2), HC triple bond CCH(2)) produces the RX addition products [(R)(Br)As(Cr(CO)(5))(2)](-) (R = PhCH(2), 3; R = C(3)H(3), 4), while the treatment of 2b with RX (RX = PhCH(2)Br or HC triple bond CCH(2)Br, CH(3)(CH(2))(5)C(O)Cl) forms the halo-substituted complexes [XSb(Cr(CO)(5))(3)](2-) (X = Br, 5; X = Cl, 6). Moreover, the dihaloantimony complexes [XX'Sb(Cr(CO)(5))(2)](-) can be obtained from the reaction of 2b with the appropriate organic halides. In this study, a series of organoarsenic and antimony chromium carbonyl complexes have been synthesized and structurally characterized and the role of the main group on the formation of the resultant complexes is also discussed.  相似文献   

8.
The alkali metal and alkaline-earth metal uranyl iodates K(2)[(UO(2))(3)(IO(3))(4)O(2)] and Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) have been prepared from the hydrothermal reactions of KCl or BaCl(2) with UO(3) and I(2)O(5) at 425 and 180 degrees C, respectively. While K(2)[(UO(2))(3)(IO(3))(4)O(2)] can be synthesized under both mild and supercritical conditions, the yield increases from <5% to 73% as the temperature is raised from 180 to 425 degrees C. Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O), however, has only been isolated from reactions performed in the mild temperature regime. Thermal measurements (DSC) indicate that K(2)[(UO(2))(3)(IO(3))(4)O(2)] is more stable than Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) and that both compounds decompose through thermal disproportionation at 579 and 575 degrees C, respectively. The difference in the thermal behavior of these compounds provides a basis for the divergence of their preparation temperatures. The structure of K(2)[(UO(2))(3)(IO(3))(4)O(2)] is composed of [(UO(2))(3)(IO(3))(4)O(2)](2)(-) chains built from the edge-sharing UO(7) pentagonal bipyramids and UO(6) octahedra. Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) consists of one-dimensional [(UO(2))(2)(IO(3))(2)O(2)](2)(-) ribbons formed from the edge sharing of distorted UO(7) pentagonal bipyramids. In both compounds the iodate groups occur in both bridging and monodentate binding modes and further serve to terminate the edges of the uranium oxide chains. The K(+) or Ba(2+) cations separate the chains or ribbons in these compounds forming bonds with terminal oxygen atoms from the iodate ligands. Crystallographic data: K(2)[(UO(2))(3)(IO(3))(4)O(2)], triclinic, space group P_1, a = 7.0372(5) A, b = 7.7727(5) A, c = 8.9851(6) A, alpha = 93.386(1) degrees, beta = 105.668(1) degrees, gamma = 91.339(1) degrees, Z = 1; Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O), monoclinic, space group P2(1)/c, a = 8.062(4) A, b = 6.940(3) A, c = 21.67(1), beta= 98.05(1) degrees, Z = 4.  相似文献   

9.
The electrochemical oxidation of ruthenocene (1) in CH(2)Cl(2)/[NBu(4)]A, where A = [B(C(6)F(5))(4)](-) or [B(C(6)H(3)(CF(3))(2))(4)](-), gives the dimeric dication [(RuCp(2))(2)](2+), 2(2+), in equilibrium with the 17-electron ruthenocenium ion 1(+). At room temperature the rapid equilibrium accounts for the quasi-Nernstian cyclic voltammetry (CV) behavior (E(1/2) = 0.41 V vs FeCp(2), A = [B(C(6)F(5))(4)](-)). Direct electrochemical evidence for 2(2+) is seen by CV and by bulk electrolysis at 243 K. The bis(ruthenocenium) dication undergoes a highly irreversible two-electron cathodic reaction at E(pc) ca. 0 V. Anodic electrolysis of 1 at 243 K using [B(C(6)H(3)(CF(3))(2))(4)](-) as the supporting electrolyte, followed by cathodic electrolysis of 2(2+), regenerates half of the original 1. Precipitation of 2(2+) occurs when the supporting electrolyte is [B(C(6)F(5))(4)](-), allowing facile isolation of [(RuCp(2))(2)][B(C(6)F(5))(4)](2). A second, unidentified, anodic product also reduces to give back ruthenocene. Digital simulations of the CV curves of 1 at 243 K give a dimerization equilibrium constant of 9 x 10(4) M(-1) for K(eq) = [(RuCp(2))(2)(2+)]/2 [RuCp(2)](+) in CH(2)Cl(2)/0.1 M [NBu(4)][B(C(6)F(5))(4)].  相似文献   

10.
A new group of CO-releasing molecules, CO-RMs, based on cyclopentadienyl iron carbonyls have been identified. X-Ray structures have been determined for [(eta-C(5)H(4)CO(2)Me)Fe(CO)(2)X], X = Cl, Br, I, NO(3), CO(2)Me, [(eta-C(5)H(4)CO(2)Me)Fe(CO)(2)](2), [(eta-C(5)H(4)CO(2)CH(2)CH(2)OH)Fe(CO)(2)](2) and [(eta-C(5)H(4)CO(2)Me)Fe(CO)(3)][FeCl(4)]. Half-lives for CO release, (1)H, (13)C, and (17)OC NMR and IR spectra have been determined along with some biological data for these compounds, [(eta-C(5)H(4)CO(2)CH(2)CH(2)OH)Fe(CO)(3)](+) and [[eta-C(5)H(4)(CH(2))(n)CO(2)Me]Fe(CO)(3)](+), n = 1, 2. More specifically, cytotoxicity assays and inhibition of nitrite formation in stimulated RAW264.7 macrophages are reported for most of the compounds analyzed. [(eta-C(5)H(5))Fe(CO)(2)X], X = Cl, Br, I, were also examined for comparison. Correlations between the half-lives for CO release and spectroscopic parameters are found within each group of compounds, but not between the groups.  相似文献   

11.
Cleavage of the Se-Se bond in [2-{O(CH(2)CH(2))(2)NCH(2)}C(6)H(4)](2)Se(2) (1) and [2-{MeN(CH(2)CH(2))(2)NCH(2)}C(6)H(4)](2)Se(2) (2) by treatment with SO(2)Cl(2), bromine or iodine (1 : 1 molar ratio) yielded [2-{O(CH(2)CH(2))(2)NCH(2)}C(6)H(4)]SeX [X = Cl (3), Br (4), I (5)] and [2-{MeN(CH(2)CH(2))(2)NCH(2)}C(6)H(4)]SeI (6). The compounds were characterized in solution by NMR spectroscopy (1H, 13C, 15N, 77Se, 2D experiments). The solid-state molecular structures of 1-3, 4.HBr, 5 and 6 were established by single crystal X-ray diffraction. In all cases T-shaped coordination geometries, i.e. (C,N)SeSe (1, 2), (C,N)SeX (3, 5, 6; X = halogen) or CSeBr(2) (4.HBr), were found. Supramolecular associations in crystals based on hydrogen contacts are discussed.  相似文献   

12.
The reactions of the hydroxo complexes [M(2)R(4)(mu-OH)(2)](2)(-) (M = Pd, R = C(6)F(5), C(6)Cl(5); M = Pt, R = C(6)F(5)), [[PdR(PPh(3))(mu-OH)](2)] (R = C(6)F(5), C(6)Cl(5)), and [[Pt(C(6)F(5))(2)](2)(mu-OH)(mu-pz)](2-) (pz = pyrazolate) with H(2)S yield the corresponding hydrosulfido complexes [M(2)(C(6)F(5))(4)(mu-SH)(2)](2-), [[PdR(PPh(3))(mu-SH)](2)], and [[Pt(C(6)F(5))(2)](2)(mu-SH)(mu-pz)](2-), respectively. The monomeric hydrosulfido complexes [M(C(6)F(5))(2)(SH)(PPh(3))](-) (M = Pd, Pt) have been prepared by reactions of the corresponding binuclear hydrosulfido complexes [M(2)(C(6)F(5))(4)(mu-SH)(2)](2-) with PPh(3) in the molar ratio 1:2, and they can be used as metalloligands toward Ag(PPh(3))(+) to form the heterodinuclear complex [(C(6)F(5))(2)(PPh(3))[S(H)AgPPh(3)]], and toward Au(PPh(3))(+) yielding the heterotrinuclear complexes [M(C(6)F(5))(2)(PPh(3))[S(AuPPh(3))(2)]]. The crystal structures of [NBu(4)](2)[[Pt(C(6)F(5))(2)(mu-SH)](2)], [Pt(C(6)F(5))(2)(PPh(3))[S(H)AgPPh(3)]], and [Pt(C(6)F(5))(2)(PPh(3))[S(AuPPh(3))(2)]] have been established by X-ray diffraction and show no short metal-metal interactions between the metallic centers.  相似文献   

13.
The treatment of the dimeric paddle-wheel (PW) compound [Mo(2)(NCCH(3))(10)][BF(4)](4)1 with oxalic acid (0.5 equiv.), 1,1-cyclobutanedicarboxylic acid (1 equiv.), 5-hydroxyisophthalic acid (1 equiv.) (m-bdc-OH) or 2,3,5,6-tetrafluoroterephthalic acid (0.5 or 1 equiv.) leads to the formation of macromolecular dicarboxylate-linked (Mo(2))(n) entities (n = 2, 3, 4). The structure of the compounds depends on the length and geometry of the organic linkers. In the case of oxalic acid, the dimeric compound [(CH(3)CN)(8)Mo(2)(OOC-COO)Mo(2)(NCCH(3))(8)][BF(4)](6)2 is formed selectively, whereas the use of 2,3,5,6-tetrafluoroterephthalic acid affords the square-shaped complex [(CH(3)CN)(6)Mo(2)(OOC-C(6)F(4)-COO)](4)[BF(4)](8)3. Bent linkers with a bridging angle of 109° and 120°, respectively, lead to the formation of the molecular loop [(CH(3)CN)(6)Mo(2)(OOC-C(4)H(6)-COO)](2)[BF(4)](4)4 and the bowl-shaped molecular triangle [(CH(3)CN)(6)Mo(2)(m-bdc-OH)](3)[BF(4)](6)5. All complexes are characterised by X-ray single crystal diffraction, NMR ((1)H, (11)B, (13)C and (19)F) and UV-Vis spectroscopy.  相似文献   

14.
From the system MF(2)/PF(5)/XeF(2)/anhydrous hydrogen fluoride (aHF), four compounds [Sr(XeF(2))(3)](PF(6))(2), [Pb(XeF(2))(3)](PF(6))(2), [Sr(3)(XeF(2))(10)](PF(6))(6), and [Pb(3)(XeF(2))(11)](PF(6))(6) were isolated and characterized by Raman spectroscopy and X-ray single-crystal diffraction. The [M(XeF(2))(3)](PF(6))(2) (M = Sr, Pb) compounds are isostructural with the previously reported [Sr(XeF(2))(3)](AsF(6))(2). The structure of [Sr(3)(XeF(2))(10)](PF(6))(6) (space group C2/c; a = 11.778(6) Angstrom, b = 12.497(6) Angstrom, c = 34.60(2) Angstrom, beta = 95.574(4) degrees, V = 5069(4) Angstrom(3), Z = 4) contains two crystallographically independent metal centers with a coordination number of 10 and rather unusual coordination spheres in the shape of tetracapped trigonal prisms. The bridging XeF(2) molecules and one bridging PF(6)- anion, which connect the metal centers, form complicated 3D structures. The structure of [Pb(3)(XeF(2))(11)](PF(6))(6) (space group C2/m; a = 13.01(3) Angstrom, b = 11.437(4) Angstrom, c = 18.487(7) Angstrom, beta = 104.374(9) degrees, V = 2665(6) Angstrom(3), Z = 2) consists of a 3D network of the general formula {[Pb(3)(XeF(2))(10)](PF(6))(6)}n and a noncoordinated XeF(2) molecule fixed in the crystal structure only by weak electrostatic interactions. This structure also contains two crystallographically independent Pb atoms. One of them possesses a unique homoleptic environment built up by eight F atoms from eight XeF(2) molecules in the shape of a cube, whereas the second Pb atom with a coordination number of 9 adopts the shape of a tricapped trigonal prism common for lead compounds. [Pb(3)(XeF(2))(11)](PF(6))(6) and [Sr(3)(XeF(2))(10)](PF(6))(6) are formed when an excess of XeF(2) is used during the process of the crystallization of [M(XeF(2))(3)](PF(6))(2) from their aHF solutions.  相似文献   

15.
New ionic complexes of fullerenes C(60) and C(70) with decamethylchromocene Cp*(2)Cr.C60.(C(6)H(4)Cl(2))(2) (1), Cp*(2)Cr.C60.(C(6)H(6))(2) (2); the multicomponent complex of (Cs(+))(C70-) with cyclotriveratrylene CTV.(Cs)(2).(C70)(2).(DMF)(7).(C(6)H(6))(0.75) (3); bis(benzene)chromium Cr(C(6)H(6))(2).C60.(C(6)H(4)Cl(2))(0.7) (4), Cr(C(6)H(6))(2).C60.C(6)H(5)CN (5), Cr(C(6)H(6))(2).C70.C(6)H(4)Cl(2) (6), Cr(C(6)H(6))(2).C60 (7); cobaltocene Cp(2)Co.C60.C(6)H(4)Cl(2) (8), Cp(2)Co.C70.(C(6)H(4)Cl(2))(0.5) (9); and cesium Cs.C70.(DMF)(5) (10) have been obtained. The complexes have been characterized by the elemental analysis, IR-, UV-vis-NIR spectroscopy, EPR and SQUID measurements. It is shown that C(60)(.-) exists as a single-bonded diamagnetic (C60-)2 dimer in 1, 2, 4, 5, and 8 at low temperatures (1.9-250 K). The dimers dissociate above 160-250 K depending on donor and solvent molecules involved in the complex. C60(.-) dimerizes reversibly and shows a small hysteresis (<2 K) at slow cooling and heating rates. The single-bonded diamagnetic (C70-)2 dimers are also formed in 6, 9, and 10 and begin to dissociate only above 250-360 K. The IR and UV-vis-NIR spectra of sigma-bonded negatively charged fullerenes are presented.  相似文献   

16.
Lube MS  Wells RL  White PS 《Inorganic chemistry》1996,35(17):5007-5014
The 1:1 mole ratio reactions of boron trihalides (BX(3)) with tris(trimethylsilyl)phosphine [P(SiMe(3))(3)] produced 1:1 Lewis acid/base adducts [X(3)B.P(SiMe(3))(3), X = Cl (1), Br (2), I (5)]. Analogous 1:1 mole ratio reactions of these boron trihalides with lithium bis(trimethylsilyl)phosphide [LiP(SiMe(3))(2)] produced dimeric boron-phosphorus ring compounds {[X(2)BP(SiMe(3))(2)](2), X = Br (3), Cl (4)}. X-ray crystallographic studies were successfully conducted on compounds 1-4. Compound 1 crystallized in the orthorhombic space group Pbca, with a = 13.420(3) ?, b = 17.044(5) ?, c = 21.731(7) ?, V = 4970.6(25) ?(3), and D(calc) = 1.229 g cm(-3) for Z = 8; the B-P bond length was 2.022(9) ?, Compound 2 crystallized in the orthorhombic space group Pbca, with a = 13.581(6) ?, b = 17.106(7) ?, c = 22.021(9) ?, V = 5116(4) ?(3), and D(calc) = 1.540 g cm(-3) for Z = 8; the B-P bond length was 2.00(2) ?. Compound 3 crystallized in the monoclinic space group P2(1)/n, with a = 9.063(5) ?, b = 16.391(8) ?, c = 9.331(4) ?, V = 1379.2(12) ?(3), and D(calc) = 1.676 g cm(-3) for Z = 2; the B-P bond length was 2.023(10) ?. Compound 4 crystallized in the monoclinic space group P2(1)/n, with a = 9.143(5) ?, b = 16.021(8) ?, c = 9.170(4) ?, V = 1342.2(11) ?(3), and D(calc) = 1.282 g cm(-3) for Z = 2; the B-P bond length was 2.025(3) ?. Thermal decomposition studies were performed on compounds 1-4, yielding colored powders with boron:phosphorus ratios greater than 1:1 and significant C and H contamination indicated by elemental analyses.  相似文献   

17.
In order to obtain crystals of fullerene oxides that are suitable for single-crystal X-ray diffraction, the reactions between C(60)O and Vaska type iridium complexes have been examined. While reaction with Ir(CO)Cl(P(C(6)H(5))(3))(2)(and with triphenylphosphine but not triphenylarsine) results in partial deoxygenation of the fullerene epoxide, reaction with Ir(CO)Cl(As(C(6)H(5))(3))(2)()()produces crystalline (eta(2)-C(60)O)Ir(CO)Cl(AsPh(3))(2).4.82C(6)H(6).0.18CHCl(3). Black triangular prisms of (eta(2)-C(60)O)Ir(CO)Cl(AsPh(3))(2).4.82C(6)H(6).0.18CHCl(3)form in the monoclinic space group P2(1)/n with a = 14.662(2) ?, b = 19.836(2) ?, c = 28.462(5) ?, and beta = 100.318(12) degrees at 123 (2) K with Z = 4. Refinement (on F(2)) of 10 472 reflections and 1095 parameters with 10 restraints yielded wR2 = 0.152 and a conventional R = 0.066 (for 7218 reflections with I > 2.0sigma(I)). The structure shows that the iridium complex is bound to a 6:6 ring junction of the fullerene with four partially occupied sites for the epoxide oxygen atom. Thus, while deoxygenation of the fullerene does not occur upon reaction with Ir(CO)Cl(AsPh(3))(2), there is a greater degree of disorder in (eta(2)-C(60)O)Ir(CO)Cl(AsPh(3))(2)than previously reported for (eta(2)-C(60)O)Ir(CO)Cl(PPh(3))(2).  相似文献   

18.
The first triethylphosphine-stabilized Pt-Au cluster compounds, [Pt(AuPEt(3))(10)](2+) (2) and [Pt(AuPEt(3))(9)](3+) (3), were prepared by the direct reaction of Pt(PEt(3))(3) with AuPEt(3)NO(3) under a dihydrogen atmosphere. Cluster 2 is the highest-nuclearity homoleptic Pt(AuPR(3))(n)() cluster yet prepared. The reactivity and structures of these clusters are in agreement with the well-established electron-counting arguments. The 18-electron cluster 2 was converted into the 16-electron cluster 3 by oxidation with 2 equiv of ferricinium ion [Fe(eta(5)-C(5)H(5))(2)](+). Cluster 3 was converted into 2 by reduction with H(2) in the presence of [AuPEt(3)](+). Cluster 3 was also observed to cleanly add the 2-electron donors CO and PEt(3) to form the 18-electron clusters [(CO)Pt(AuPEt(3))(9)](3+) (4) and [(PEt(3))Pt(AuPEt(3))(9)](3+) (5), respectively. Single-crystal X-ray diffraction results show that 3 has a flattened, toroidal structure in which the PtAu(9) framework has a Pt-centered, tricapped trigonal prismatic geometry. Crystal data for [Pt(AuPEt(3))(9)](NO(3))(3) is as follows: hexagonal P6(3)/m, a = 15.134(5) ?, c = 23.48(1) ?, V = 4657 ?(3), Z = 2, residuals R = 0.056, and R(w)() = 0.053 for 1489 observed reflections and 81 variables, Mo Kalpha radiation. Compound 3 was found to reversibly add H(2) in solution to form the dihydride cluster [(H)(2)Pt(AuPEt(3))(9)](3+) (6). The equilibrium constant for this addition reaction is 1.1 x 10(3) M(-)(1) (CD(2)Cl(2) solution, 25 degrees C), slightly smaller than that for [Pt(AuPPh(3))(8)](2+). The rate of the addition is also slower than that with [Pt(AuPPh(3))(8)](2+). Cluster 3 is an excellent homogeneous catalyst for H(2)-D(2) equilibration giving a turnover rate for HD production of 0.13 s(-)(1) (nitrobenzene solvent, 30 degrees C, 1 atm). The PEt(3)-containing clusters give similar rates and follow the same general trends previously observed with PPh(3)-ligated clusters. The chemistry of these new clusters is explained by consideration of the steric and electronic properties of the PEt(3) ligand. These new compounds will be useful as models for hydrogen activation by Pt-Au clusters and as precursors for supported Pt-Au catalysts.  相似文献   

19.
The transition metal, alkali metal, and main group uranyl selenites, Ag(2)(UO(2))(SeO(3))(2) (1), K[(UO(2))(HSeO(3))(SeO(3))] (2), Rb[(UO(2))(HSeO(3))(SeO(3))] (3), Cs[(UO(2))(HSeO(3))(SeO(3))] (4), Tl[(UO(2))(HSeO(3))(SeO(3))] (5), and Pb(UO(2))(SeO(3))(2) (6), have been prepared from the hydrothermal reactions of AgNO(3), KCl, RbCl, CsCl, TlCl, or Pb(NO(3))(2) with UO(3) and SeO(2) at 180 degrees C for 3 d. The structures of 1-5 contain similar [(UO(2))(SeO(3))(2)](2-) sheets constructed from pentagonal bipyramidal UO(7) units that are joined by bridging SeO(3)(2-) anions. In 1, the selenite oxo ligands that are not utilized within the layers coordinate the Ag(+) cations to create a three-dimensional network structure. In 2-5, half of the selenite ligands are monoprotonated to yield a layer composition of [(UO(2))(HSeO(3))(SeO(3))](1-), and coordination of the K(+), Rb(+), Cs(+), and Tl(+) cations occurs through long ionic contacts. The structure of 6 contains a uranyl selenite layered substructure that differs substantially from those in 1-5 because the selenite anions adopt both bridging and chelating binding modes to the uranyl centers. Furthermore, the Pb(2+) cations form strong covalent bonds with these anions creating a three-dimensional framework. These cations occur as distorted square pyramidal PbO(5) units with stereochemically active lone pairs of electrons. These polyhedra align along the c-axis to create a polar structure. Second-harmonic generation (SHG) measurements revealed a response of 5x alpha-quartz for 6. The diffuse reflectance spectrum of 6 shows optical transitions at 330 and 440 nm. The trailing off of the 440 nm transition to longer wavelengths is responsible for the orange coloration of 6.  相似文献   

20.
The carbaalane halogen derivatives [(AlX)(6)(AlNMe(3))(2)(CCH(2)CH(2)SiMe(3))(6)] (X = F (9), Cl (7), Br (10), I (11)) were prepared in toluene from [(AlH)(6)(AlNMe(3))(2)(CCH(2)CH(2)SiMe(3))(6)] (6) and BF(3).OEt(2), BX(3) (X = Br, I), Me(3)SnF, and Me(3)SiX (X = Cl, Br, I), respectively. A partially halogenated product [(AlH)(2)(AlX)(4)(AlNMe(3))(2)(CCH(2)CH(2)SiMe(3))(6)] (12) (X = Cl (approximately 40%), Br (approximately 60%)) was obtained from 5 and impure BBr(3). [(AlH)(6)(AlNMe(3))(2)(CCH(2)Ph)(6)] (5) was converted to [(AlX)(6)(AlNMe(3))(2)(CCH(2)Ph)(6)] (X = F (13), Cl (14), Br (15), I (16)) using BF(3).OEt(2) and Me(3)SiX (X = Cl, Br, I), respectively. The X-ray single-crystal structures of 11.C(6)H(6), 12.3C(7)H(8), 13.6C(7)H(8), and 15.4C(7)H(8) were determined. Compounds 7 and 9-11 are soluble in benzene/toluene and could be well characterized by NMR spectroscopy and MS (EI) spectrometry. The results demonstrate the facile substitution of the hydridic hydrogen atoms in 5 and 6 by the halides with different reagents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号