首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
H.D. Zhang 《Journal of Non》2008,354(34):4089-4093
In this thesis, we will elaborate on the synthesis and characterization of monolithic Gd2O3 aerogel. We conducted the experiment in the following procedure. Use gadolinium nitrate or gadolinium chloride, a kind of inorganic gadolinium salt as raw material, and polymerize it in ethanol with propylene oxide as gelation initiator in the way of sol-gel. After this step, we can obtain the wet gel. Then, dry the wet gel by supercritical CO2, at last we will get aerogel. The product has strong transparency and also shows some thermal stability. XRD characterization shows that it is amorphous. Nitrogen adsorption/desorption analysis tells clearly its surface area (223 m2/g), average pore diameters (42 nm) and large pore volume (1.83 ml/g). It is also characterized by transmission electron microscopy and high-resolution transmission electron microscopy.  相似文献   

2.
Textural properties of carbon gels can be controlled by varying the synthesis and drying process conditions. In this work, the influence of the initial pH and the drying method on the final properties of carbon gels, synthesized using methanol as a solvent, was evaluated. Furthermore, the use of microwaves as a drying method for the synthesis of carbon xerogels was assessed. In the light of the results obtained, in order to synthesize monolithic and microporous carbon gels in a short period of time, the use of a multimode microwave oven is proposed. The use of pH 7 also leads to shorter gelation times and more consistent monoliths. Furthermore, the multimode microwave drying can produce homogeneous microporosity and surface areas of up to 1341 m2 g?1, in a very short time (i.e., only 6 min is required for the drying step).  相似文献   

3.
This letter describes the effects that the surfactant, sodium dodecylbenzene sulfonate (SDBS), has on the structure and electrical properties of monolithic carbon aerogels (CA). Using organic sol-gel chemistry, a series of novel CA materials prepared with different concentrations of SDBS were characterized to evaluate the influence the surfactant had on the network structure of the resultant material. Addition of the SDBS surfactant to the sol-gel reaction mixture was shown to generate CA structures that had different pore sizes, higher densities and improved electrical conductivity than those prepared without the surfactant. These results are discussed in comparison with relevant sol-gel literature and theory.  相似文献   

4.
Macroporous (1–5 μm) monolithic silica aerogels consisting of both random but also ordered mesoporous walls have been synthesized via an acid-catalyzed sol–gel process from tetramethoxysilane (TMOS) using a triblock co-polymer (Pluronic P123) as a structure-directing agent and 1,3,5-trimethylbenzene (TMB) as a micelle-swelling reagent. Pluronic P123 was removed by Soxhlet extraction, and materials in monolithic form were obtained by extracting the pore filling solvent with liquid CO2, which eventually was taken out supercritically. Although these monoliths are more robust than base-catalyzed silica aerogels of similar density, nevertheless, the mechanical properties can be improved dramatically by letting an aliphatic di-isocyanate (Desmodur N3200) react with the silanols on the macro- and mesoporous surfaces. As it turns out, the polymer fills the mesopores and coats conformally the macropores of templated samples, so that BET surface areas decrease dramatically, from 550–620 m2 g?1 to <5 m2 g?1. By comparison, polymer nano-encapsulation of non-templated acid-catalyzed aerogels preserves a large fraction of their mesoporous surface area, and BET values decrease from 714 m2 g?1 to 109 m2 g?1. Finally, since polymer nano-encapsulation preserves the macroscopic physical dimensions of the monoliths before drying, comparative analysis of the physical dimensions against XRD data of native versus polymer nano-encapsulated samples provides evidence that upon drying macropores (micron size regime) shrink less than mesopores (nanometer size regime).  相似文献   

5.
High purity TeO2 crystals are produced to be used for the search for the neutrinoless double beta decay of 130Te. Dedicated production lines for raw material synthesis, crystal growth, and surface processing were built compliant with radio-purity constraints specific to rare event physics experiments. High sensitivity measurements of radio-isotope concentrations in raw materials, reactants, consumables, ancillaries, and intermediary products used for TeO2 crystals production are reported. Indications are given on the crystals perfection and how it is achieved and maintained in a large scale production process. Production and certification protocols are presented and resulting ready-to-use TeO2 crystals are described.  相似文献   

6.
The synthesis of germanium sulfide gels by thiolysis reactions of a non-aqueous solution of Ge(OEt)4, followed by supercritical fluid extraction to create aerogels, is described. Analysis of the as-prepared GeSx aerogels by powder X-ray diffraction (PXRD) and surface area analysis reveals an amorphous structure exhibiting very high surface areas, 755 m2/g, that rival those of the best SiO2 aerogels when compared on a per mole basis. Transmission electron microscopy shows that the aerogel material is composed of a continuous network of GeSx colloidal particles assembled in a three-dimensional architecture. A detailed comparison of GeSx aerogels and their xerogel (bench-top dried) counterparts in terms of the influence of the synthetic methodology on morphology and surface area is reported. In the presence of adventitious moisture, the amorphous GeSx is oxidized to a crystalline phase identified by X-ray photoelectron spectroscopy, Raman spectroscopy and PXRD cell refinement to be hexagonal GeO2.  相似文献   

7.
We have examined experimentally the effects of rapid supercritical extraction (RSCE) process variables and their resulting pressure and temperature characteristics on aerogel properties. We employ an RSCE process that uses a hydraulic hot press to seal and heat a contained mold until the aerogel precursors reach a supercritical state. After a short stabilization period the hot press restraining force is lowered and the supercritical fluid is allowed to escape, leaving behind an aerogel monolith. The entire process can be accomplished in fewer than 3 h. To control the process, we set the restraining force, the maximum temperature, the heating and cooling rates, the pressure release rate and the mold volume fill ratio (related to the amount of initial precursor material). To investigate the effects of these variables we made silica aerogels from a TMOS-based recipe. We varied the volume of precursor material from 10 to 15 mL (60-97% fill volume), the restraining force from 43 to 111 kN, the temperature heat rate from 0.7 to 4.2 °C/min, the maximum temperature from 288 to 371 °C and the pressure release rate from 0.23 to 0.66 MPa/min. The RSCE process is robust. We were able to make transparent, monolithic aerogels under almost all conditions with little effect on the resulting aerogel properties. Typical density measurements yielded values of approximately 0.065 g/mL (bulk) and 1.9 g/mL (skeletal). The samples were translucent and transmitted 70% of the light at 800 nm (for 5-mm thick samples). The BET surface areas ranged from 517 to 590 m2/g. Maximum temperature was the only variable found to have a significant effect on the aerogels’ properties. As the maximum temperature increased from 288 to 371 °C the surface area decreased from 560 to 395 m2/g and average pore diameter (BJH desorption) increased from 21 to 32 nm.  相似文献   

8.
SiO2/TiO2 composites were synthesized by adding Degussa P25 TiO2 to a liquid sol that was catalyzed by HNO3 and HF acids. Various composites were synthesized by altering the mass loading of TiO2 and concentration of HF added to the liquid sol before gelation. The resulting materials were characterized by SEM, nitrogen adsorption-desorption, streaming potential, XRD, diffuse reflectance and TiO2 surface area analyses. Approximate characteristics include an isoelectric point of 3, TiO2 particle size of 30 nm, and a band gap energy of 3.2 eV. Small variations in these properties were noted for the different composites. Physical characteristics were largely affected by HF concentration and TiO2 loading. Nitrogen adsorption-desorption isotherms were type IV for all materials and exhibited trends of decreased pore volume with an increase in TiO2 loading and an increase in pore diameter with increased HF concentration. Surface areas of the composites ranged from 167 to 630 m2/g. Available TiO2 surface area of the composite was also dependent upon TiO2 loading and increased as the mass composition of TiO2 increased but was not largely affected by HF concentration.  相似文献   

9.
Zhengwei Jin  Xiuguo Cui 《Journal of Non》2007,353(26):2507-2514
Highly ordered mesoporous silica materials have been synthesized under mildly acidic conditions by templating with a nonionic triblock copolymer (Pluronic P104) in a two-step process. It was found that a transformation from the SBA-15 type 2-dimensional (2D) hexagonal channel mesostructure (p6mm symmetry) to the MSU-X type 3-dimensional (3D) worm-like mesostructure could be induced by varying the pH whilst keeping all other conditions constant. The transformation between two types of mesoporous silica materials can be attributed to the effect of varying proton concentration on the interaction between organic micelles and inorganic species. Both types of mesoporous materials have high surface areas, large pore volumes, thick pore walls, large mean pore sizes, and narrow pore size distribution.  相似文献   

10.
《Journal of Non》2006,352(30-31):3295-3301
We report the synthesis and characterization of three particle-reinforced water-based nanocomposite coatings. The films are sol–gel derived using non-ionic surfactant, with aluminum perchlorate (Al(ClO4)3) as a catalyst and 3-glycidoxypropyltrimethoxysilane (GPTMS) as precursor. Through the aid of nanoparticle colloids and a minute amount of catalyst, dense, hard and monolithic materials are obtained. Incorporating metal oxide nanoparticles brings forth unique properties, such as absorbing harmful UV radiation. Silica colloid composites provide greatly enhanced mechanical properties without modifying the unique optical properties of inorganic materials. Water-based synthesis of these coatings is straightforward and produces very few harmful byproducts, making them ideal materials in industry. The materials presented are relatively hard and abrasion resistant with very good adhesion; two of the coatings are UV absorbent. Various colloids can be employed in our methods to tailor properties and resulting materials may serve applications such as optical, protective, catalytic, guest-host, and multifunctional coatings.  相似文献   

11.
Long-wavelength vertical cavity surface emitting lasers (VCSELs) are considered the best candidate for the future low-cost reliable light sources in fiber communications. However, the absence of high refractive index contrast in InP-lattice-matched materials impeded the development of 1.3–1.5 μm VCSELs. Although wafer fusions provided the alternative approaches to integrate the InP-based gain materials with the GaAs/AlAs materials for their inherent high refractive index contrast, the monolithic InP-based lattice-matched distributed Bragg reflectors (DBRs) are still highly attractive and desirable. In this report, we demonstrate InP/InGaAlAs DBRs with larger refractive index contrast than InP/InGaAsP and InAlAs/InGaAlAs DBRs. The switching between InP and InGaAlAs layers and growth rate control have been done by careful growth interruption technique and accurate in situ optical monitoring in low-pressure metal organic chemical vapor deposition. A 35 pairs 1.55 μm centered InP/InGaAlAs DBRs has the stopband of more than 100 nm and the highest reflectivity of more than 99%. A VCSEL structure incorporating 35 pairs InP/InGaAlAs DBR as the bottom mirror combined with a 2λ thick periodic gain cavity and 10 pairs SiO2/TiO2 top dielectric mirrors was fabricated. The VCSELs lased at 1.56 μm by optical pumping at room temperature with the threshold pumping power of 30 mW.  相似文献   

12.
M. Espinosa  S. Pacheco 《Journal of Non》2007,353(26):2573-2581
The immobilization of two different succinic-modified carboxy-imide-porphyrins on the surface of amino-modified SBA-15 is reported. The SBA-15 was synthesized and modified by reacting its hydroxyls groups with the OH and/or OR groups of 3-amino propyl triethoxy silane, anchoring the amino group on its surface. Separately, two different derivatives amino-porphyrins (NH2-5-m-Etio-III-Ni2+ and NH2-2βpyrrolic-m-5,10,15,20-TPP-Ni2+) were modified using succinic anhydride to provides these with the carboxyl group appropriate to react covalently with the amino groups previously anchored on the SBA-15; these new hybrid materials have the appropriated textural and chemical characteristics to be used in heterogeneous catalysis. The samples were characterized by XRD, N2 adsorption isotherms, HR-TEM, TGA/DTA, FTIR, UV/VIS, 13C and 29Si NMR-CP/MAS.  相似文献   

13.
Ultralow density silica aerogels prepared with PEDS   总被引:1,自引:0,他引:1  
Xu Chao  Shen Jun  Zhou Bin 《Journal of Non》2009,355(8):492-780
This paper deals with the synthesis of ultralow density silica aerogels using polyethoxydisiloxanes (PEDS) as the precursor via sol-gel process followed by supercritical drying using ethanol solvent extraction. Ultralow density silica aerogels with 5 mg/cc of density were made for the molar ratio by this method. A remarkable reduction in the gelation time was observed by the effect of the catalyst NH4OH at room temperature. The microstructure and morphology of the ultralow density silica aerogels were characterized by the specific surface area, SBET, SEM, TEM and the pore size distribution techniques. The results show that the diameter of the silica particles is about 13 nm and the pore size of the silica aerogels is about several nm. The specific surface area of the silica aerogel is 339 m2/g and the specific surface area, pore volume and average pore diameter decrease with increasing density of the silica aerogel.  相似文献   

14.
《Journal of Non》2006,352(21-22):2152-2158
ZrO2:Eu3+–SiO2 and ZnO–SiO2 composites have been synthesized by a sol–gel method by using a specific gelation and drying procedure. In the two cases we were able to produce large and transparent monolithic samples. Microstructural properties of these materials were investigated by thermo-differential and thermo-gravimetric analysis, X-ray diffraction, transmission electron microscopy and small angle X-ray scattering. The existence of a miscibility gap in both systems results in the formation of nanocomposites where crystallized zirconia or amorphous zinc oxide nanoparticles are dispersed in a silica glass matrix. These two kinds of nanocomposites are potential high efficiency luminescent materials because the nanoparticles size is easily controlled by the annealing conditions.  相似文献   

15.
《Journal of Non》2003,318(3):305-313
A promising way of fabricating integrated optics components is based on the sol-gel synthesis and photocuring of hybrid materials. However, the presence of OH groups in these materials is a major factor in optical amplification inhibition. In particular, high losses at 1550 nm are mainly due to non-condensed OH groups originating from the sol-gel process at low temperature. Thus, improvement of the final properties of these materials is correlated with the inhibition of OH group concentration. In this study, we used 29Si NMR and near infrared spectroscopy to demonstrate the catalytic effect of zirconium (IV) n-propoxide on the condensation reactions of silanol groups. 29Si NMR showed the absence of silanol species at the end of the synthesis. This result is attributed to the zirconate hydrophilic effect which consumes OH groups by catalysing the polycondensation of Si-OH bonds. In parallel, near-infrared experiments showed the presence of a high proportion of OH species at the end of the synthesis showing that the remaining OH groups are only present in the zirconium species.  相似文献   

16.
Optically transparent organic-inorganic hybrid coating materials have been prepared by a sol-gel process. Four different types of the coating material produced by TWI in Cambridge, UK using the patented Vitresyn® method, all identical in terms of the starting materials, but differing in terms of their relative proportions, have been examined. Tetraethoxysilane was used as the primary inorganic precursor and urethane acrylate was used as the source of the organic component. 3-(Trimethoxysilyl)propyl methacrylate was used as both a secondary inorganic source and a silane coupling agent to improve the compatibility of the organic and inorganic phases. The degree of chemical interaction of the organic and inorganic phases after processing was determined by 29Si and 13C nuclear magnetic resonance and Fourier transform infrared spectroscopy. The effect of the relative amount of inorganic starting component in these hybrid materials on their thermal properties was investigated through differential scanning calorimetry and thermogravimetric analysis. Similar degrees of chemical interaction between the organic and inorganic phases were found in all four samples. T3, Q3 and Q4 are the main cross-linking network structures in these hybrid systems, the relative proportions of which are determined by the relative proportions of the starting materials.  相似文献   

17.
To evaluate surface oxidation of Fe2+-rich multi-component silicate glass, powder and pieces of natural basalt glass are heat-treated in Ar and subsequently investigated by Mössbauer spectroscopy to monitor the increase of Fe3+. Glass pieces show no increase in oxidation with time or temperature, suggesting that the oxygen potential between glass and Ar is insufficient to cause volume oxidation. In contrast, glass powder oxidizes readily to a degree comparable with that of powder oxidation in air, suggesting that surface oxidation does not depend on the oxygen potential. No cation diffusion to the glass surface is detected in Ar, though it is observed upon heat treatment in air; cation diffusion is therefore unlikely to be involved in oxidation. We suggest the following mechanism for surface oxidation: (1) adsorption of water on the glass surface as OH, by exposure to air and (2), a concomitant reaction, i.e., oxidation with the glass, upon heating (chemisorption). Hereby, either oxygen of air or residual oxygen in Ar would react with the hydrogen of the -OH, liberating the oxygen for oxidation of iron. Heat treatment in vacuum of 10−8 mbar does not result in any oxidation, and we assume that the adsorbed OH is exhausted from the glass surface.  相似文献   

18.
The chemical reactivity of the ligand initially coordinated on the TiO2 precursor plays a decisive role in the morphology of TiO2:poly(N-vinylcarbazole) (PVK) thin film elaborated by in situ generation of the inorganic phase in the polymer matrix. The final aim of this study is to prepare a new nanocomposite TiO2:poly(N-vinylcarbazole) (PVK) thin film from hydrolysis-condensation of titanium alkoxide in polymer thin film. In this context, we synthesized a new TiO2 precursor, the tetrakis (9H-carbazole-9-yl-ethyl-oxy) [Ti(OeCarb)4], bearing ligands close to the repetitive unit structure of the PVK to improve the interaction between both materials. In this study, the synthesis and reactivity to hydrolysis of Ti(OeCarb)4 is presented. Ti(OeCarb)4 was elaborated from alcoholysis reaction between titanium isopropoxide [Ti(iOPr)4] and 9H-carbazole-9-ethanol (ECOH) and identified by 1H and 13C NMR spectroscopy. The reactivity to hydrolysis-oxolation of Ti(OeCarb)4 was evaluated first in aqueous media by in situ 1H NMR spectroscopy analysis. Moreover, reactivity of Ti(OeCarb)4 to surrounding humidity was evaluated in thin film by X-ray photoelectron spectroscopy (XPS). Results show that steric hindrance of 9H-carbazole-9-yl-ethyl-oxide ligands do not influence the hydrolysis-condensation process in aqueous media in our experimental conditions when compared to [Ti(iOPr)4] but decrease the reactivity when the precursor is simply exposed to air humidity.  相似文献   

19.
A supernatant solution of silicate species extracted from coal fly ash in a power plant by alkali fusion was used under acidic conditions to prepare a mesoporous silica, SBA-16. SBA-16 was used as a template for the synthesis of a mesoporous carbon using sucrose as a carbon source. These mesoporous silica and carbon materials were characterized by XRD, N2 adsorption-desorption, SEM, and TEM. Textural properties of the silica and carbon samples prepared using fly ash were found to be comparable to those prepared by pure chemicals, successfully demonstrating the feasibility of recycling fly ash for the synthesis of high quality porous materials.  相似文献   

20.
Aligned ZnO nanowires were grown by metal organic chemical vapor deposition on patterned silicon substrate. The shape of nanostructures was greatly influenced by the micropatterned surface. The aspect ratio, packing fraction and the number density of nanowires on top surface are around 10, 0.8 and 107 per mm2, respectively, whereas the values are 20, 0.3 and 5×107 per mm2, respectively, towards the bottom of the cavity. XRD patterns suggest that the nanostructures have good crystallinity. High-resolution transmission electron microscopy confirmed the single-crystalline growth of the ZnO nanowires along the [0 0 0 1] direction. Photosensitivity of the nanowires, grown on both top and bottom surface of the microchannel, was observed. However, the nanowires grown on bottom surface have shown better UV response with base line recovery at dark condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号