首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high-energy X-ray diffraction study has been carried out on a series of 0.5Li2S + 0.5[(1 − x)GeS2 + xGeO2] glasses with x = 0.0, 0.1, 0.2, 0.4, 0.6 and 0.8. Structure factors were measured to wave vectors as high as 30 Å−1 resulting in atomic pair distribution functions with high real space resolution. The three dimensional atomic-scale structure of the glasses was modeled by reverse Monte Carlo simulations based on the diffraction data. Results from the simulations show that at the atomic-scale 0.5Li2S + 0.5[(1 − x)GeS2 + xGeO2] glasses may be viewed as an assembly of independent chains of (Li+-S)2GeS2/2 and (Li+-O)2GeO2/2 tetrahedra as repeat units, where the Li ions occupy the open space between the chains. The new structure data may help understand the reasons for the sharp maximum in the Li+ ion conductivity at x ∼ 0.2.  相似文献   

2.
The optical absorption spectra of xPbO-(100 − x) P2O5 glasses where x = 5, 10, 15, 20, 25, and 30 is reported. The spectral absorption of these glasses was measured in the spectral range 300-900 nm at room temperature. Optical absorption spectra show that the absorption edge has a tail extending towards lower energies. The edge shifts nearly linearly towards higher energies with increasing PbO content. The degree of the edge shift was found to depend on the PbO content and is mostly related to the structural rearrangement and the relative concentrations of the glass basic units. The optical energy gap increases, from 2.55 to 3.05 eV by increasing PbO content from 5 to 30 mol%. The width of the localized states is decreased by increasing PbO content.  相似文献   

3.
Erbium-doped glasses with composition xGeO2-(80 − x)TeO2-10ZnO-10BaO were prepared by melt-quenching technique. The phonon sideband spectra and the optical absorption band edges for the host matrix were confirmed by means of the spectral measurements. Standard Judd-Ofelt calculations have been completed to these glasses. The dependence of up-conversion and infrared emission under 980 nm excitation on the glass composition was studied. The quantum efficiencies for the 4I13/2 → 4I15/2 transition of trivalent erbium in the glasses were estimated.  相似文献   

4.
Specimens of the glassy system: (70 − x)TeO2 + 15B2O3 + 15P2O5 + xLi2O, where x = 5, 10, 15, 20, 25 and 30 mol% were prepared by the melt-quenching. An ultrasonic pulse-echo technique was employed, at 5 MHz, for measuring: the ultrasonic attenuation, longitudinal and shear wave velocities, elastic moduli, Poisson ratio, Debye temperature and hardness of the present glasses. It is found that the gradual replacement of TeO2 by Li2O in the glass matrix up to 30 mol% leads to decrease the average crosslink density and rigidity of prepared samples which affects the properties, i.e., the hardness, ultrasonic wave velocities and elastic moduli are decreased, while the Poisson ratio and the ultrasonic attenuation are increased. Also, optical absorption spectra were recorded in the range, 200-800 nm for these glasses. The obtained results showed that a gradual shift in the fundamental absorption edge toward longer wavelengths occurred. Values of both of the optical energy gap, Eopt, and width tails, ΔE, are determined. It is observed that Eopt is decreased and ΔE increased with the increase of Li2O in the glass matrix up to 30 mol%. The compositional dependences of the above properties are discussed and correlated to the structure of tested glasses.  相似文献   

5.
xTiO2-(60 − x)SiO2-40Na2O glasses have proven an interesting linear and non-linear optical properties [M. Abdel-Baki, F. Abdel Wahab, F. El-Diasty, Mater. Chem. Phys. 96 (2006) 201]. The investigated glasses show one order of magnitude enhancement for the second-order index of refraction and third-order optical susceptibility over some TiO2 silicate glasses. In this work, we continue studying these glasses using three different techniques to analyze the glass structures seeking to provide a deep insight for the relation between structure, compositions and the optical characteristics of these glasses. Radial Distribution Function analysis (RDF) combined Raman spectroscopy are used to study these glasses. Positron annihilation lifetime spectroscopy and Doppler broadening measurements are carried out to investigate the change in the glass structure as the incorporation of TiO2 concentration into glass. The origin of the non-bridging oxygen (NBO) bonds has been traced to correlate their existence with the measured non-linear optical properties of the investigated glasses.  相似文献   

6.
The luminescence of GeO2 rutile-like crystals was studied. Crystals were grown from a melt of germanium dioxide and sodium bicarbonate mixture. Luminescence of the crystal was compared with that of sodium germanate glasses produced in reduced and oxidized conditions. A luminescence band at 2.3 eV was observed under N2 laser (337 nm). At higher excitation photon energies and X-ray excitation an additional band at 3 eV appears in luminescence. The band at 2.3 eV possesses intra-center decay time constant about 100 μs at 290 K and about 200 μs at low temperature. Analogous luminescence was obtained in reduced sodium germanate glasses. No luminescence was observed in oxidized glasses under nitrogen laser, therefore the luminescence of rutile-like crystal and reduced sodium germanate glass was ascribed to oxygen-deficient luminescence center modified by sodium. The band at 2.3 eV could be ascribed to triplet-singlet transition of this center, whereas the band at 3 eV, possessing decay about 0.2 μs, could be ascribed to singlet-singlet transitions. Both bands could be excited in recombination process with decay kinetics determined by traps, when excitation realized by ArF laser or ionizing irradiation with X-ray or electron beam. Another luminescence band at 3.9 eV in GeO2 rutile-like crystal was obtained under ArF laser in the range 100-15 K. Damaging e-beam irradiation of GeO2 crystal with α-quartz structure induces similar luminescence band.  相似文献   

7.
Pulsed neutron and high-energy X-ray diffraction, small-angle neutron scattering, Raman spectroscopy and DSC were used to study structural changes on the short, intermediate and mesoscopic range scale for sulfur-rich AsSx (x ? 1.5) and GeSx (x ? 2) glasses. Two structural regions were found in the both systems. (1) Between stoichiometric (As2S3 and GeS2) and ‘saturated’ (AsS2.3 and GeS2.7) compositions, excessive sulfur atoms form sulfur dimers and/or short chains, replacing bridging sulfur in corner-sharing AsS3/2 and GeS4/2 units. (2) Above the ‘saturated’ compositions at [As] < 30.5 at.% and [Ge] < 27 at.%, sulfur rings and longer sulfur chains (especially in the AsSx system) appear in the glass network. The glasses become phase separated with the domains of 20-50 Å, presumably enriched with sulfur rings. The longer chains Sn are not stable and crystallize to c-S8 on ageing of a few days to several months, depending on composition.  相似文献   

8.
Room temperature electron spin resonance (ESR) spectra and temperature dependent magnetic susceptibility measurements have been performed to investigate the effect of iron ions in 41CaO · (52 − x)SiO2 · 4P2O5 · xFe2O3 · 3Na2O (2 ? x ? 10 mol%) glasses. The ESR spectra of the glass exhibited the absorptions centered at g ≈ 2.1 and g ≈ 4.3. The variation of the intensity and linewidth of these absorption lines with composition has been interpreted in terms of variation in the concentration of the Fe2+ and Fe3+ in the glass and the interaction between the iron ions. The magnetic susceptibility data were used to obtain information on the relative concentration and interaction between the iron ions in the glass.  相似文献   

9.
S. Rada  M. Rada  E. Culea 《Journal of Non》2011,357(1):62-66
Glasses in the system xGd2O3(100 − x)[7GeO2·3PbO] with 0 ≤ x ≤ 40 mol% have been prepared from melt quenching method. The influence of gadolinium ions on structural behavior in lead-germanate glasses has been investigated using FTIR, UV-VIS and EPR spectroscopy. The structural changes have been analyzed with increasing rare earth concentration.FTIR data suggest that the glass network modifications has taken place mainly in the germanate part whereas the lead part remained unmodified and its network consists mainly from the [GeO4], [GeO6], [Ge2O7] structural units and with interconnected through Ge-O-Ge bridges in [GeO4] structural units. The changes in amplitude and bandwidth of the UV-VIS bands ranging from 200 nm to 350 nm depend on the content of Gd2O3.By increasing the Gd2O3 content in the glass matrix, the optical band gap energy increases, indicating changes of the lattice parameters and that no non-bridging-oxygens form upon the addition of gadolinium oxide. The decreasing trend has been observed both in optical gap band energy and refractive index of oxide glasses at x = 10 mol% Gd2O3 indicating breaks up the [GeO4] tetrahedral units bonds and create of non-bridging oxygen atoms. For sample with x ≥ 20 mol%, the gadolinium ions having a behavior of network formers (g ≈ 4.8) will coordinate more with the excess of oxygen. Accordingly, the gadolinium ions are generally suspected to improve their environment of network formers.  相似文献   

10.
N. Baizura 《Journal of Non》2011,357(15):2810-2815
Tellurite 75TeO2-(10 − x)Nb2O5-15ZnO-(x)Er2O3; (x = 0.0-2.5 mol%) glass system with concurrent reduction of Nb2O5 and Er2O3 addition have been prepared by melt-quenching method. Elastic properties together with structural properties of the glasses were investigated by measuring both longitudinal and shear velocities using the pulse-echo-overlap technique at 5 MHz and Fourier Transform Infrared (FTIR) spectroscopy, respectively. Shear velocity, shear modulus, Young's modulus and Debye temperature were observed to initially decrease at x = 0.5 mol% but remained constant between x = 1.0 mol% to x = 2.0 mol%, before increasing back with Er2O3 addition at x = 2.5 mol%. The initial drop in shear velocity and related elastic moduli observed at x = 0.5 mol% were suggested to be due to weakening of glass network rigidity as a result of increase in non-bridging oxygen (NBO) ions as a consequence of Nb2O5 reduction. The near constant values of shear velocity, elastic moduli, Debye temperature, hardness and Poisson's ratio between x = 0.5 mol% to x = 2.0 mol% were suggested to be due to competition between bridging oxygen (BO) and NBO ions in the glass network as Er2O3 gradually compensated for Nb2O5. Further addition of Er2O3 (x > 2.0 mol%) seems to further reduce NBO leading to improved rigidity of the glass network causing a large increase of ultrasonic velocity (vL and vS) and related elastic moduli at x = 2.5 mol%. FTIR analysis on NbO6 octahedral, TeO4 trigonal bipyramid (tbp) and TeO3 trigonal pyramid (tp) absorption peaks confirmed the initial formation of NBO ions at x = 0.5 mol% followed by NBO/BO competition at x = 0.5-2.0 mol%. Appearance of ZnO4 tetrahedra and increase in intensity of TeO4 tbp absorption peaks at x = 2.0 mol% and x = 2.5 mol% indicate increase in formation of BO.  相似文献   

11.
Glasses having compositions 40Bi2O3-20GeO2-(40−x)PbO-xMoO3 (where x = 3, 6, 9, 12 and 15 mol%) were prepared by normal melt quenching technique. The density (d) decreases gradually with the increase of the MoO3 content in such glasses. This may be due to the lower molecular weight MoO3 is substituted by a higher molecular weight PbO. The dc conductivity decreases while the activation energy increases with the increase of the MoO3 content. The dc conductivity in the present glasses is electronic depends strongly upon the average distance, R, between the Mo ions. Analysis of the electrical properties has been made in the light of small polaron hopping model. The parameters obtained from the fits of the experimental data to this model are reasonable and consistent with glass composition. The conduction is attributed to non-adiabatic hopping of small polaron. Dielectric properties (constant ε, loss tan δ, ac conductivity σac, over a range of frequency 0.12-100 kHz and temperature 325-650 K and frequency exponent s) of these glasses have been studied.  相似文献   

12.
The Er3+ doped transparent oxyfluoride glass ceramics were obtained by appropriate heat treatment of the precursor glasses with composition (mol%) 50SiO2-xPbF2-(50 − x)PbO-0.5ErF3. The microstructure and optical properties of the glasses and glass ceramics were determined by differential scanning calorimetry (DSC), X-ray diffraction (XRD), absorption spectra and luminescence spectra. The intensity of upconversion luminescence significantly increased in glass ceramics compared to that in precursor glass. The emission bands centered around 660 nm (4F9/2 → 4I15/2) and 410 nm (2H9/2 → 4I15/2) were simultaneously observed in glass ceramics but cannot be seen in the corresponding precursor glass. The influence of different PbF2 content on the microstructure and upconversion luminescence of the samples was analyzed in detail. The results indicated that with the increase of PbF2 content, the Ω2 was almost the same and the ratios of red to green upconversion luminescence decreased in glass ceramics.  相似文献   

13.
B. Ko?cielska 《Journal of Non》2008,354(14):1549-1552
The studies of electrical conductivity of NbN-SiO2 films are reported. To obtain these films, sol-gel derived xNb2O5-(100 − x)SiO2 (where x = 100, 90, 80, 70, 60, 50 mol%) coatings were nitrided at 1200 °C. The nitridation process leads to the formation of some disordered structures, with NbN metallic grains dispersed in insulating SiO2 matrix. The structure of the samples was studied using X-ray diffraction (XRD) and atomic force microscopy (AFM). The electrical conductivity was measured with the conventional four-terminal method in the temperature range from 5 to 280 K. The superconducting transition was not observed even for the sample that does not contain silica. All the samples exhibit negative temperature coefficient of resistivity. The results of conductivity versus temperature may be described on the grounds of a model proposed for a weakly disordered system.  相似文献   

14.
Qiang Mei 《Journal of Non》2003,324(3):264-276
The glass forming range of the Ag2S + B2S3 + GeS2 ternary system was investigated for the first time and a wide range of ternary glasses were obtained. The Archimedes’ method was used to determine the densities of the Ag-B-Ge glasses. The thermal properties of these thioborogermanate glasses were studied by DSC and TMA. The Raman, IR and NMR spectroscopy were used to explore the short-range order structure of the binary (Ag-B) and (Ag-Ge) and ternary (Ag-B-Ge) glasses. The results show the presence of bridging sulfur tetrahedral units, GeS4/2 and AgBS4/2, and trigonal units, BS3/2, in the ternary glasses. Non-bridging sulfur units, AgSGeS3/2 and Ag3B3S3S3/2 six membered rings, are also observed in these glasses at higher Ag2S modification levels because the further addition of Ag2S results in the degradation of the bridging structures to form non-bridging structures. The NMR studies show that Ag2S goes into the GeS2 subnetwork to form Ag3S3GeS1/2 groups before going to the B2S3 subnetwork. In doing so, it is suggested that B10S20 supertetrahedra exist in Ag2S + B2S3 and Ag2S + B2S3 + GeS2 glasses. Significantly B-S-Ge bonds form in the B2S3 + GeS2 glasses, whereas they appear to be absent in the ternary glasses. From these observations, a structural model for these glasses has been developed and proposed.  相似文献   

15.
Bing Zhang  Li Song  Fengzhen Hou 《Journal of Non》2008,354(18):1948-1954
Glasses in the ternary system ZnO-Sb2O3-P2O5 were investigated as potential alternatives to lead based glasses for low temperature applications. The glass-forming region of ZnO-Sb2O3-P2O5 system has been determined. Structure and properties of the glasses with the composition (60 − x)ZnO-xSb2O3-40P2O5 were characterized by infrared spectra (IR), differential thermal analysis (DTA) and X-ray diffraction (XRD). The results of IR indicated the role of Sb3+ as participant in glass network structure, which was supported by the monotonic and remarkable increase of density (ρ) and molar volume (VM) with increasing Sb2O3 content. Glass transition temperature (Tg) and thermal stability decreased, and coefficient of thermal expansion (α) increased with the substitution of Sb2O3 for ZnO in the range of 0-50 mol%. XRD pattern of the heat treated glass containing 30 mol% Sb2O3 indicated that the structure of antimony-phosphate becomes dominant. The improved water durability of these glasses is consistent with the replacement of easily hydrated phosphate chains by corrosion resistant P-O-Sb bonds. The glasses containing ?30 mol% Sb2O3 possess lower Tg (<400 °C) and better water durability, which could be alternatives to lead based glasses for practical applications with further composition improvement.  相似文献   

16.
The well known and characterized fast ion conducting (FIC) LiI + Li2S + GeS2 glass-forming system has been further optimized for higher ionic conductivity and improved thermal and chemical stability required for next generation solid electrolyte applications by doping with Ga2S3 and La2S3. These trivalent dopants are expected to eliminate terminal and non-bridging sulfur (NBS) anions thereby increasing the network connectivity while at the same time increasing the Li+ ion conductivity by creating lower basicity [(Ga or La)S4/2] anion sites. Consistent with the finding that the glass-forming range for the Ga2S3 doped compositions is larger than that for the La2S3 compositions, the addition of Ga2S3 is found to eliminate NBS units to create bridging sulfur (BS) units that not only gives an improvement to the thermal stability, but also maintains and in some cases increases the ionic conductivity. The compositions with the highest Ga2S3 content showed the highest Tgs of ∼325 °C. The addition of La2S3 to the base glasses, by comparison, is found to create NBS by forming high coordination octahedral LaS63− sites, but yet still improved the chemical stability of the glass in dry air and retained its high ionic conductivity and thermal stability. Significantly, at comparable concentrations of Li2S and Ga2S3 or La2S3, the La2S3-doped glasses showed the higher conductivities. The addition of the LiI to the glass compositions not only improved the glass-forming ability of the compositions, but also increased the ionic conductivity glasses. LiI concentrations from 0 to 40 mol% improved the conductivities of the Ga2S3 glasses from ∼10−5 to ∼10−3 (Ω cm)−1 and of the La2S3 glasses from ∼10−4 to ∼10−3 (Ω cm)−1 at room temperature. A maximum conductivity of ∼10−3 (Ω cm)−1 at room temperature was observed for all of the glasses and this value is comparable to some of the best Li ion conductors in a sulfide glass system. Yet these new compositions are markedly more thermally and chemically stable than most Li+ ion conducting sulfide glasses. LiI additions decreased the Tgs and Tcs of the glasses, but increased the stability towards crystallization (Tc − Tg).  相似文献   

17.
I. Dyamant  E. Korin 《Journal of Non》2008,354(27):3135-3141
Glasses in the La2O3−CaO−B2O3 ternary system were studied. The glass forming range as determined by the appearance of the annealed cast was found to match previously published findings. Clear glasses were formed in the composition range of 5.7−19.1 mol% La2O3 with constant B2O3 content of 71.4 mol%, and in glasses of constant La2O3:CaO ratio of 1:4 with B2O3 content in the range of 71.4-55.0 mol%. The non-linear optical crystalline phase La2Ca2B10O19 was crystallized from the clear glasses after heat treatments, as determined by powder XRD. Two types of the LaBO3 crystalline phases were detected in the partially and the fully crystallized glass compositions outside the glass forming range. Data are reported for the glass transition temperature (Tg), dilatometric softening point (Td), linear coefficient of expansion (α), onset crystallization temperature (Tx), exothermal peak temperature (TP), density (ρ) and index of refraction (nD) in the clear glasses.  相似文献   

18.
E. Mansour 《Journal of Non》2011,357(5):1364-3380
Fourier transformation infrared spectra, density and DC electrical conductivity of 30Li2O · xCeO2⋅(70 − x)B2O3 glasses, where x ranged between 0 and 15 mol%, have been investigated. The results suggested that CeO2 plays the role of network modifier up to 7.5 mol%. At higher concentrations it plays a dual role; where most of ceria plays the role of network former. The density was observed to increase with increasing CeO2 content. The effect on density of the oxides in the glasses investigated is in the succession: B2O3 < Li2O < CeO2. Most of CeO2 content was found to be associated with B2O3 network to convert BO3 into B O4 units. The contribution of Li+ ions in the conduction process is much more than that due to small polarons. The conductivity of the glasses is mostly controlled by the Li+ ions concentration rather than the activation energy for CeO2 > 5 mol%. Lower than 5 mol% CeO2 the conductivity is controlled by both factors. The dependence of W on BO4 content supports the idea of ionic conduction in these glasses.  相似文献   

19.
ZBLAN glasses with the composition (in mol%) of (100 − x)(53 ZrF4 + 19 BaF2 + 5LaF3 + 3AlF3 + 20NaF) + xTiO2 (x = 0, 1.0 and 2.0 mol%) were prepared using a conventional melting technique in dry nitrogen atmosphere. The thermal stability, glass-forming ability, and crystallization kinetics of the ZBLAN system as a function of the TiO2 concentrations were investigated by Differential Scanning Calorimetry (DSC). Also, the crystalline phases were determined by X-ray Diffraction (XRD). Our study indicates that adding TiO2 in a fluoride system improves the thermal parameters of the glass, which is interesting for applications as optical fiber.  相似文献   

20.
Transparent glasses composition of which can be expressed by the formula: (100−x) · (K2O · 2TiO2 · P2O5) · x(K2O · 2B2O3 · 7SiO2), where x=5, 10, 15 and 20 mol% (KTP-xKBS), were obtained by melt quenching technique. The structure and crystallization behavior of these glasses have been examined by Fourier transform infrared spectroscopy, differential thermal analysis and X-ray diffraction. In spite of their nominal composition, the studied glasses exhibit a similar oxygen polyhedra distribution. However, significant differences were found in the trigonal BO3 units amount. During DTA runs all the examined glasses devitrify in two steps. In the former, very small crystals of an unknown crystalline phase are produced. In KTP-5KBS and KTP-10KBS glasses anatase phase was also detected. Attempts were made in order to identify the unknown phase (UTP) for which a AB3(XO4)2(OH)6 Crandallite-type structure was proposed where the A, B and X sites were occupied by K, Ti and/or Al, and P, respectively. In the second devitrification step the crystallization of the KTiOPO4 phase occurs while the UTP phase previously formed disappears. Isothermal heat treatments performed at temperature just above Tg have allowed one to obtain transparent crystal-glass nanocomposites, formed by crystalline nanostructure of the UTP phase uniformly dispersed in the amorphous matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号