首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J.K. Lee  D.H. Bae  W.T. Kim 《Journal of Non》2004,333(2):212-220
The effect of Sn substitution for Si on the glass forming ability (GFA) and crystallization behavior has been studied in Ni59Zr20Ti16Si5 − xSnx (x=0, 3, 5) alloys. A bulk amorphous Ni59Zr20Ti16Si2Sn3 alloy with diameter up to 3 mm can be fabricated by injection casting. Partial substitution of Si by Sn in Ni59Zr20Ti6Si5 − xSnx alloys improves the glass forming ability. The improved GFA of the Ni59Zr20Ti16Si2Sn3 alloy is can be explained based on the lowering of liquidus temperature. The crystallization sequence becomes completely different with addition of Sn. The amorphous Ni59Zr20Ti16Si5 alloy crystallizes via precipitation of only a cubic NiTi phase in the first crystallization step, whereas the amorphous Ni59Zr20Ti16Si2Sn3 alloy crystallizes via simultaneous precipitation of orthorhombic Ni10(Zr,Ti)7 and cubic NiTi phases. Addition of Sn in the Ni59Zr20Ti16Si5 alloy suppresses the formation of the primary cubic NiTi phase. The bulk amorphous Ni59Zr20Ti16Si2Sn3 alloy exhibits high compressive fracture strength of about 2.7 GPa with a plastic strain of about 2%.  相似文献   

2.
J.N. Mei  J.S. Li  H.C. Kou  H.Z. Fu  L. Zhou 《Journal of Non》2008,354(28):3332-3335
As-cast (Ti40Zr25Ni8Cu9Be18)100−xNbx (0 ? x ? 5) (Ф3) glassy forming alloys were investigated in order to clarify the role of Nb on the formation of icosahedral quasicrystalline phase (I-phase) in Ti-rich Ti-Zr-Ni-Cu-Be glassy system. It is found that an I-phase is formed in Ti-Zr-Ni-Cu-Be glassy alloy by addition of Nb element; however, the nucleation rate of I-phase increases, whereas the grain growth rate decreases with increasing Nb content. Moreover, with increasing Nb content, the thermal stability against crystallization increases, while the temperature range of stability of the I-phase decreases.  相似文献   

3.
The effect of Sn substitution for Ni on the glass-forming ability was studied in Cu47Ti33Zr11Ni8−xSnxSi1 (x=0,2,4,6,8) alloys by using thermal analysis and X-ray diffractometry. With increasing x from 0 to 8, the glass transition temperature, Tg, of melt-spun Cu47Ti33Zr11Ni8−xSnxSi1 alloys increased gradually from 720 to 737 K. On the other hand, the crystallization temperature, Tx, increased from 757 K at x=0 to 765 K at x=2, being nearly same with further increase of x. Partial substitution of Ni by Sn in Cu47Ti33Zr11Ni8Si1 promotes the glass formation. Both amorphous Cu47Ti33Zr11Ni8−xSnxSi1 alloys prepared by melt spinning and injection casting showed similar crystallization process during continuous heating in DSC. Temperature range of undercooled liquid region exhibits good correlation with the critical diameter for the formation of an amorphous phase in injection casting.  相似文献   

4.
The far-infrared spectra of Ge10Se90−xTex where x = 0, 10, 20, 30, 40, 50 glassy alloys were measured in the wavenumber region 50-650 cm−1 at room temperature. The results were explained in terms of the vibrations of the isolated molecular units. The addition of Te in Ge10Se90 has shown the appearance of GeTe2 and GeTe4 molecular units and vibrations of Se-Te bond as Se8−xTex mixed rings. The assignment of various absorption bands has been made on the basis of absorption spectra of pure Se, binary Ge-Se, Ge-Te, Se-Te and ternary Ge-Se-Te glassy alloys. The far-infrared transmission spectrum has been found to shift a little towards lower wavenumber side with the addition of Te content to Ge10Se90. The addition of Te to Ge-Se system replacing Se has found to reduce the Se-Se bonds and Ge-Se bonds and leads to the formation of Se-Te, Ge-Te and Te-Te bonds.  相似文献   

5.
First-principles molecular dynamics (MD) simulations are performed to study the structure and dynamics of liquid Al1−xSix (x = 0.0, 0.12, 0.2, 0.4, 0.6, 0.8) at the temperature of 1573 K. The composition dependence of static structure factors, pair correlation functions, and diffusion constants are investigated. We found that the structure of the liquid Al1−xSix alloys is strongly dependent on the composition. From our simulation and analysis, we can see that although liquid Al1−xSix is metallic, there are some degrees of covalent tetrahedral short-range order in the liquid. The degree of tetrahedral short-range order increases linearly as the Si concentration in the liquid increased. The diffusion coefficients of both Al and Si atoms in liquid Al1−xSix alloys at 1573 K are not very sensitive to the composition.  相似文献   

6.
Potentiodynamic polarization studies were carried out on virgin specimens of Zr-based bulk amorphous alloys Zr46.75Ti8.25Cu7.5Ni10Be27.5 and Zr65Cu17.5Ni10Al7.5, and conventional-type binary amorphous alloys Zr67Ni33 and Ti60Ni40 in solutions of 0.2 M, 0.5 M and 1.0 M HNO3 at room temperature. The values of the corrosion current density (Icorr) for the bulk amorphous alloy Zr46.75Ti8.25Cu7.5Ni10Be27.5 were found to be comparable with those of Zr65Cu17.5Ni10Al7.5 in 0.2 M and 0.5 M HNO3, but the value of Icorr for the former was almost three times more than that of the latter in 1.0 M HNO3. In the case of conventional binary amorphous alloys, Ti60Ni40 showed lower value of Icorr as compared to Zr67Ni33 in 0.5 M and 1.0 M HNO3 and a comparable value of Icorr in 0.2 M HNO3. In general, the binary Ti60Ni40 displayed the best corrosion resistance among all the alloys in all the cases and the corrosion current density (Icorr) for all the alloys was found to increase with the increasing concentration of nitric acid. It is noticed that the bulk amorphous alloys do not possess superior corrosion resistance as compared to conventional binary amorphous alloys in aqueous HNO3 solutions. The observed differences in their corrosion behavior are attributed to different alloy constituents and composition of the alloys investigated.  相似文献   

7.
In the present paper, the effect of carbon on the microstructural evolution of Zr66.7−xNi33.3Cx (x = 0, 1, 3) alloys during mechanical alloying has been investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that these three alloys undergo similar amorphization and crystallization processes, and the final milling product is a metastable fcc-Zr66.7−xNi33.3Cx phase. The carbon addition can shorten the milling time for the complete amorphization reaction and enhance the stability of the formed amorphous alloy, which can suppress the mechanically induced amorphous-crystalline phase transformation with further increasing milling time.  相似文献   

8.
Melt-spun ribbon and bulk samples in cylindrical rod form with diameter ranging from 2 mm to 4 mm of Ti40Cu40Zr10Ni10 alloy were prepared by melt-spinning technique and copper mould casting method, respectively. The microstructure, thermal stability and mechanical properties of the bulk samples were investigated. A completely glassy single phase is formed in the 2 mm rod sample. Increasing the diameter of the rod samples resulted in the formation of CuTi crystalline phase in the 3 mm and 4 mm rod samples. The 2 mm single glassy rod sample exhibited a large supercooled liquid region ΔTx = 58 K and γ = Tx/(Tg + Tl) is 0.390, which indicated that the alloy possessed a good glass-forming ability. The bulk samples also exhibited good mechanical properties. The 2 mm rod sample showed the highest yield strength of about 2086 MPa. The 3 mm rod sample not only showed high yield strength of about 2000 MPa, but also enhanced plastic strain of about 0.71%.  相似文献   

9.
We report the structural and optical properties of wurtzite-structure Zn(Mg,Cd)O ternary alloys. Wurtzite (0 0 0 1) Zn1−xCdxO and MgyZn1−yO films were grown on (11–20) sapphire substrates using remote-plasma-enhanced metalorganic chemical vapor deposition. The large bowing parameters of Zn1−xCdxO and MgyZn1−yO ternary alloys are 3.0 and 3.5, respectively, which reflects the large difference of each binary’s electronegativity. We have analyzed the broadening of photoluminescence (PL) in Zn(Mg,Cd)O alloys on alloy content by taking into account the statistical alloy fluctuation and the localization of the exciton, and have clarified that the localization of the exciton strongly affects to PL full-width at half-maximum (FWHM) in Zn(Mg,Cd)O alloys. The alloy broadenings in steady-state PL of Zn(Mg,Cd)O alloys are in good agreement with the calculated tendency by the theoretical model based on the statistical alloy fluctuation, while PL FWHM of Zn1−xCdxO is three times larger than the calculated results. Moreover, as another way to confirm alloy broadening, we also have done time-resolved PL measurements and derived the localized depth of the exciton in ZnO-based system, indicating a good agreement with the tendency of PL FWHM broadening.  相似文献   

10.
M. Anbarasu  S. Asokan 《Journal of Non》2008,354(28):3369-3374
Alternating differential scanning calorimetric (ADSC) studies and electrical switching experiments have been undertaken on Al15Te85−xSix (2 ? x ? 12) system of glasses. These glasses are found to exhibit two crystallization reactions (Tc1 and Tc2), for compositions with x < 8. Above x = 8, a single-stage crystallization is seen. Further, a trough is seen in the composition dependence of non-reversing enthalpy (ΔHNR), based on which it is proposed that there is a thermally reversing window in Al15Te85−xSix glasses, in the composition range 4 ? x ? 8. Electrical switching studies indicate that Al15Te85−xSix glasses exhibit a threshold type electrical switching at ON state currents less than 2 mA. Further, the switching voltages are found to increase with the increase in silicon content. It is interesting to note that the start (x = 4) and the end (x = 8) of the thermally reversing window are exemplified by a kink and a saturation in the composition dependence of switching voltages, respectively.  相似文献   

11.
A simulated (inactive) borosilicate high-level waste (HLW) glass was produced on a full-scale vitrification line with composition simulating vitrified oxide fuel (UO2) reprocessing waste. As-cast samples were compositionally homogeneous (Type I microstructure) and/or compositionally inhomogeneous displaying compositional ‘banding’ and frequently containing ‘reprecipitated calcine’ (Type II microstructure). Crystal phases identified in as-cast samples were: tetragonal RuO2, cubic Pd-Te alloy, cubic (Cr,Fe,Ni,Ru)3O4, trigonal Na3Li(MoO4)2·6H2O, ostensibly cubic Zr1 − x − yCexGdyO2 − 0.5y and a lanthanoid (Nd,Gd,La,Ce) silicate. Zr1 − x − yCexGdyO2 − 0.5y and lanthanoid (Nd,Gd,La,Ce) silicate were found exclusively in the Type II microstructure as component crystal phases of ‘reprecipitated calcine’. Heat treated samples (simulating the retarded cooling experienced by actual (active) borosilicate HLW glasses after pouring) displayed extensive crystallisation and cracking (Type A microstructure) and/or ‘banded’ crystallisation (Type B microstructure) depending on their parent (as-cast) microstructure (Type I and/or Type II respectively). Crystal phases identified in heat treated samples were: tetragonal SiO2 (α-cristobalite), tetragonal (Na,Sr,Nd,La)MoO4, cubic Ce1 − x − yZrxGdyO2 − 0.5y, a Ni-rich phase, a lanthanoid (Nd,Gd,La,Ce) silicate and orthorhombic LiNaZrSi6O15 (zektzerite). α-cristobalite was found exclusively in the Type A microstructure, while lanthanoid (Nd,Gd,La,Ce) silicate and zektzerite were only found in the Type B microstructure. Potential host phases for HLW radionuclides are: Pd-Te alloy (107Pd and 79Se), (Cr,Fe,Ni,Ru)3O4 (63Ni), Zr1 − x − yCexGdyO2 − 0.5y (93Zr, Pu and U), both lanthanoid (Nd,Gd,La,Ce) silicates (Am and Cm), (Na,Sr,Nd,La)MoO4 (90Sr, Am and Cm), Ce1 − x − yZrxGdyO2 − 0.5y (93Zr, Pu and U), the Ni-rich phase (63Ni) and zektzerite (93Zr, 126Sn and U). Cracking in samples was attributed to thermal expansion mismatch between the borosilicate HLW glass matrix and RuO2, cristobalite (both α and β), (Na,Sr,Nd,La)MoO4 and zektzerite on cooling. There was also a contribution from the cristobalite α-β phase transition.  相似文献   

12.
K. Zhang  B. Yao  D. Wang 《Journal of Non》2006,352(1):78-83
A systematic investigation of the influence of B content on the magnetoimpedance (MI) effect in melt-spun Fe91−xZr5BxNb4 (FZBN, 0 ? x ? 30) ribbons has been performed within a frequency range, f ∼ 310-1110 kHz and under a varying dc magnetic field (Hdc) up to 70 Oe. The MI effect is not observed in the sample with x ? 5 but within the range 8 ? x ? 30. A distinct MI effect has been observed with a maximum change of 180% at around 1.1 MHz in the sample with x = 20, coincident with a saturation magnetic field of 66 Oe and a field sensitivity of about 7%/Oe. Magnetic measurements reveal that the MI effect and B content dependence of the effect are closely related to coercivity of the FZBN alloy series, except for the sample with 20 at.%. The drastic MI ratio observed in the sample with x = 20 is ascribed to its special microstructure. The mechanism of the MI effect in FZBN alloys and of the significant MI value appearing at a B content of x = 20 is discussed in this paper.  相似文献   

13.
Refractory bulk metallic glasses and bulk metallic glass composites are formed in quaternary Ni-Nb-Ta-Sn alloy system. Alloys of composition Ni60(Nb100−xTax)34Sn6 (x = 20, 40, 60, 80) alloys were prepared by injection-casting the molten alloys into copper molds. Glassy alloys are formed in the thickness of half mm strips. With thicker strips (e.g., 1 mm), Nb2O5 and Ni3Sn phases and the amorphous phase form an in situ composite. Glass transition temperatures, crystallization temperatures, and ΔTx, defined as Tx1 − Tg (Tx1: first crystallization temperature, Tg: glass transition temperature) of the alloys increase dramatically with increasing Ta contents. These refractory bulk amorphous alloys exhibit high Young’s modulus (155-170 GPa), shear modulus (56-63 GPa), and estimated yield strength (3-3.6 GPa).  相似文献   

14.
J.B. Qiang  W. Zhang  G.Q. Xie  A. Inoue 《Journal of Non》2008,354(18):2054-2059
The crystallization behavior of melt-spun (Zr65Al7.5Cu27.5)100−xTix (x = 0-15; in at.%) metallic glasses has been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The DSC traces showed an altered crystallization mode in the vicinity of 3 at.% Ti addition. A metastable icosahedral quasicrystal precipitated at the first crystallization stage of the Ti-bearing metallic glasses, which subsequently transformed to the stable Zr2Cu-type phase in the followed exothermic reaction. The glass-forming abilities (GFAs) of these metallic glasses were assessed by the recognized GFA indicators Trg, ΔTx and γ. BMGs were easily made in the compositions containing 3-7 at.% Ti by means of copper mold casting. The validity of these parameters was clarified using the critical BMG forming diameter evidence.  相似文献   

15.
Si homo-epitaxial growth by low-temperature reduced pressure chemical vapor deposition (RPCVD) using trisilane (Si3H8) has been investigated. The CVD growth of Si films from trisilane and silane on Si substrates are compared at temperatures between 500 and 950 °C. It is demonstrated that trisilane efficiency increases versus silane's one as the surface temperature decreases. Si epilayers from trisilane, with low surface roughness, are achieved at 600 and 550 °C with a growth rate equal to 12.4 and 4.3 nm min−1, respectively. It is also shown that Si1−xGex layers can be deposited using trisilane chemistry.  相似文献   

16.
The formation of the supercooled liquid region and devitrification behavior of Ni-based glassy alloys were studied by using X-ray diffraction, transmission electron microscopy, differential scanning calorimetry and isothermal calorimetry. oC68 Ni10Zr7-type phase is primarily formed in the studied alloys in the initial stage of the devitrification process by nucleation and three-dimensional diffusion controlled growth. The replacement of Cu by Ni in Cu55Zr30Ti10Pd5 glassy alloy induces precipitation of oC68 Ni10Zr7 phase directly from the glassy phase. The reasons for such a behavior are discussed taking into account mixing enthalpy in a liquid state and the interval of the supercooled liquid region.  相似文献   

17.
Bulk metallic glasses (BMGs) of Zr46−xNbxCu37.6Ag8.4Al8 with x = 0, 0.5, 1, 2 and 4 at.% were prepared by copper mould casting. The corrosion resistance of the ZrCu-based BMGs with different Nb contents was carefully examined by weight loss measurements and potentiodynamic polarization tests in 3 mass% NaCl, 1 N HCl and 1 N H2SO4 solutions, respectively. Nb addition improves the newly developed BMGs’ corrosion resistance in chloride-containing solutions and the alloys all exhibit excellent corrosion resistance in 1 N H2SO4. The corrosion behavior of the alloy containing 0 and 4 at.% Nb in phosphate-buffered solution was examined by electrochemical polarization tests. The influence of Nb addition on glass forming ability (GFA), thermal stability and mechanical property was investigated by X-ray diffraction, differential scanning calorimetry and compression tests, respectively. It is found that the addition of Nb can deteriorate the GFA and thermal stability of the base system, but little effect is observed on the mechanical properties, e.g., yielding strength and plasticity, of the ZrCu-based BMG alloys.  相似文献   

18.
N. Bayri  H. Gencer  M. Gunes 《Journal of Non》2009,355(1):12-2594
In this study, we have investigated the effect of substituting Mn for Fe on the crystallization kinetics of amorphous Fe73.5−xMnxCu1Nb3Si13.5B9 (x = 1, 3, 5, 7) alloys. The samples were annealed at 550 °C and 600 °C for 1 h under an argon atmosphere. The X-ray diffraction analyses showed only a crystalline peak belonging to the α-Fe(Si) phase, with the grain size ranging from 12.2 nm for x = 0 to 16.7 nm for x = 7. The activation energies of the alloys were calculated using Kissinger, Ozawa and Augis-Bennett models based on differential thermal analysis data. The Avrami exponent n was calculated from the Johnson-Mehl-Avrami equation. The activation energy increased up to x = 3, then decreased with increasing Mn content. The values of the Avrami exponent showed that the crystallization is typical diffusion-controlled three-dimensional growth at a constant nucleation rate.  相似文献   

19.
P. Gong  K.F. Yao  Y. Shao 《Journal of Non》2012,358(18-19):2620-2625
A series of lightweight Ti–Zr–Be–Al bulk metallic glasses (BMGs) have been developed through the addition of Al to Ti–Zr–Be ternary glassy alloy. By replacing Be with Al, the critical size of the glassy rod has been increased from 5 mm for Ti41Zr25Be34 alloy to 7 mm for Ti41Zr25Be29Al5 alloy, while the yield strength of Ti41Zr25Be34 ? xAlx (x = 2–10) has been greatly enhanced, resulting in a significant increase of the specific strength which is defined as yield strength/density. Among these newly developed Ti–Zr–Be–Al BMGs, Ti41Zr25Be26Al8 glassy alloy exhibits a high specific strength of 4.33 × 105 Nm/kg and a very large compressive plastic strain of 47.0%, which are much larger than those (3.69 × 105 Nm/kg and 2.9%, respectively) for Ti41Zr25Be34 glassy alloy. The present results show that Al is an effective alloying element for improving the glass-forming ability (GFA) and mechanical properties of Ti-Zr-Be glassy alloy.  相似文献   

20.
Chun-Li Dai  Yi Li 《Journal of Non》2008,354(31):3659-3665
A new composition region of bulk metallic glass formation, around Cu52Zr40Ti8, was discovered in the Cu-Zr-Ti ternary system, for which monolithic bulk metallic glass rods of 4 mm in diameter can be fabricated using copper mold casting. The solidification of the Cu52Zr40Ti8 deeply-undercooled liquid mainly undergoes a univariant eutectic reaction, (L → Cu10Zr7 + CuZr), even though this composition was predicted to be a ternary eutectic point (L → Cu10Zr7 + CuZr + Cu2ZrTi) by CALPHAD calculations. With respect to the deep-eutectic reaction of (L → Cu10Zr7 + CuZr) in the Cu-Zr binary alloys, alloying of Ti has a significant effect on further stabilizing the liquid, as indicated as a drop of the univariant eutectic groove, limiting the coupled growth of two crystalline phases, hence increasing the glass-forming ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号