首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Fourier transform infrared gas-phase spectrum of thiazole, C3H3NS, has been recorded in the 600-1400 cm−1 wavenumber region with a resolution around 0.0030 cm−1. Nine fundamental bands (ν5(A′) to ν11(A′), ν15(A″), and ν16(A″)) are analysed employing the Watson model. Ground-state rotational and quartic centrifugal distortion constants as well as upper state spectroscopic constants have been obtained from the fits. A detailed analysis of perturbations identified in the ν11(A′) band at 866.5 cm−1 enables a definitive location of the very weak ν10(A′) and ν14(A″) bands at 879.3 and 888.7 cm−1, respectively. The three levels are analysed simultaneously by a model including Coriolis resonance using an ab initio predicted first order c-Coriolis coupling constant; second and higher order Coriolis parameters are determined. Qualitative explanations in terms of Coriolis resonances are given for a number of crossings observed in ν5(A′), ν6(A′), and ν7(A′) at 1383.7, 1325.8, and 1240.5 cm−1, respectively. The rotational constants, anharmonic frequencies, and vibration-rotation constants (alphas, ) calculated by quantum chemical calculations using a cc-pVTZ and TZ2P basis with B3LYP methodology, have been compared with the present experimental data. The rotation constant differences for each vibrational state, from the ground state values, are closer to experiment from the TZ2P calculations relative to those using cc-pVTZ. The values for ΔJ, ΔJK, ΔK, δJ, and δK are close to experiment with both basis sets.  相似文献   

2.
The Fourier transform gas-phase IR spectrum of isoxazole, C3H3NO, between 550 and 1700 cm−1 was measured with a resolution of ca. 0.003 cm−1. Ten fundamental bands in the region 800-1700 cm−1 have been analyzed by the Watson Hamiltonian model to yield upper state spectroscopic constants. A number of local resonances have been identified in the bands and explained qualitatively, and the unobserved ν14(A″) fundamental band has been located at 897.5(5) cm−1 from its perturbation effects on the neighboring fundamentals.  相似文献   

3.
The Fourier transform gas-phase IR spectrum of oxazole, C3H3NO, has been recorded with a resolution of ca. 0.0030 cm−1 in the wavenumber region 600-1400 cm−1. The rotational structures of 10 fundamental bands (four of a-type, three of b-type and three of c-type) have been analysed using the Watson model. Ground state rotational and quartic centrifugal distortion constants as well as upper state spectroscopic constants have been obtained from the fits. A number of perturbations have been identified in the bands. From a local crossing observed in ν15 we located the very weak ν14 band at 858.19(1) cm−1. Also ν13 is definitively located at 899.3 cm−1. The three global c-Coriolis interacting dyads ν9/ν10, ν10/ν11, and ν12/ν13 have each been analysed by a model including first and second order Coriolis resonance using ab initio predicted first order Coriolis coupling constants; second order Coriolis interaction parameters are determined. The rotational constants, harmonic and anharmonic frequencies, intensities, and vibration-rotation constants (alphas, ) have been predicted by quantum chemical calculations using a cc-pVTZ basis at the MP2 and B3LYP methodology levels, and compared with the present experimental data. Both the rotational constants and frequencies are marginally closer to experiment from the B3LYP calculations. In order to make more significant comparisons between theory and experiment for the alphas, we take differences between ground and vibronic state values; under these circumstances, the B3LYP definitely have a closer fit to experiment.  相似文献   

4.
The Fourier transform gas-phase IR spectrum of 1,2,5-thiadiazole, C2H2N2S, has been recorded with a resolution of ca. 0.003 cm−1 in the wavenumber region 750-1250 cm−1. Five fundamental bands in this region, ν4 (A1), ν5 (A1), ν11 (B1), ν13 (B1), and ν14 (B2), have been analysed by the Watson Hamiltonian model to yield ground-state rotational and quartic centrifugal distortion constants as well as upper-state spectroscopic constants. A global perturbation of the ν4 level is explained by Fermi resonance with the 2ν15 level which has been located from its resonance effect. Rotational constants, harmonic and anharmonic frequencies have been calculated using a cc-pVTZ basis, at the MP2 and B3LYP methodology levels, and compared with the experimental data.  相似文献   

5.
The Fourier transform gas-phase IR spectrum of natural isotopic 1,2,5-selenadiazole, C2H2N2Se, has been recorded with a resolution of ca. 0.0025 cm−1 in the wavenumber region 600-1400 cm−1. The three a-type bands, ν2 (A1), ν4 (A1), ν5 (A1), the two b-type bands ν11 (B1), ν12 (B1), and the c-type band ν14 (B2) for each of the isotopologues C2H2N280Se and C2H2N278Se have been analyzed using the Watson model. Ground state rotational and quartic centrifugal distortion constants as well as upper state spectroscopic constants have been obtained from the fits. The rotational constants, harmonic and anharmonic frequencies, and vibration-rotation constants (alphas, ) have been predicted by quantum chemical calculations using a cc-pVTZ basis at the MP2 and B3LYP methodology levels, and compared with the present experimental data. Although the rotation constants are marginally closer to experiment from the MP2 calculations, in general the B3LYP frequencies and alphas are closer to experiment.  相似文献   

6.
The high-resolution spectrum of cyanogen (14N12C12C14N) has been measured from 500 to 4900 cm−1. For this isotopomer many combination levels with both degenerate fundamentals, ν4 and ν5, have been measured for the first time and the effects of vibrational l-type resonance are observed as well as rotational l-type resonance. The effects of the vibrational resonance coupling ν2 and 2ν4 have also been studied. The data have been combined with earlier measurements below 500 cm−1 to give a comprehensive catalog of the vibrational energy levels and the rovibrational constants for the normal isotopomer of cyanogen. A comparison of the term value constants for the three major symmetric isotopomers is given and they are compared with a recent ab initio calculation. The present data were combined with earlier work on the two symmetric isotopomers, 13C214N2 and 12C215N2, to obtain the equilibrium bond lengths, rCC = 138.109(60) pm and rCN = 115.976(40) pm.  相似文献   

7.
The Fourier transform infrared spectrum of gaseous 1,3,4-oxadiazole, C2H2N2O, has been recorded in the 800–1600 cm−1 wavenumber region with a resolution around 0.0030 cm−1. The four fundamental bands ν9(B1; 852.5 cm−1), ν14(B2; 1078.5 cm−1), ν4(A1; 1092.6 cm−1), and ν2(A1; 1534.9 cm−1) are analyzed by the standard Watson model. Ground state rotational and quartic centrifugal distortion constants are obtained from a simultaneous fit of ground state combination differences from three of these bands and previous microwave transitions. Upper state spectroscopic constants are obtained for all four bands from single band fits using the Watson model. The ν4 and ν14 bands form a c-Coriolis interacting dyad, and the two bands are analyzed simultaneously by a model including first and second order Coriolis resonance using the ab initio predicted Coriolis coupling constant . An extended local resonance in ν2 is explained as higher order b-Coriolis type resonance with ν6 + ν10, which is further perturbed globally by the ν15 + ν10 level. A fit of selected low-J transitions to a triad model including ν2(A1), ν6 + ν10(B1), and ν15 + ν10(A2) using an ab initio calculated Coriolis coupling constant is performed.The rotational constants, ground state quartic centrifugal distortion constants, anharmonic frequencies, and vibration–rotational constants (α-constants) predicted by quantum chemical calculations using a cc-pVTZ and TZ2P basis with B3LYP methodology, are compared with the present experimental data, where there is generally good agreement. A complete set of anharmonic frequencies and α-constants for all fundamental levels of the molecule is given.  相似文献   

8.
The Fourier transform gas-phase IR spectrum of 1,2,3-thiadiazole, C2H2N2S, has been recorded with a resolution of ca. 0.003 cm−1 in the 700-1100 cm−1 spectral region. Four fundamental bands ν6(A/; 1101.8 cm−1), ν7(A/; 1038.8 cm−1), ν9(A/, 858.9 cm−1), and ν13(A//; 746.2 cm−1) have been analyzed using the Watson model in A-reduction. Two additional bands, ν8 (A/; 894.6 cm−1) and ν12(A//; 881.2 cm−1) were assigned by their weak Q-branches. Ground state rotational and quartic centrifugal distortion constants as well as upper state spectroscopic constants have been obtained from fits. A number of weak global and local interactions are present in the bands. The resonances identified were qualitatively explained by Coriolis type perturbations with neighboring levels. Ground state rotational and quartic centrifugal distortion constants, anharmonic frequencies, and vibration-rotational α-constants predicted by quantum chemical calculations using a cc-pVTZ basis and B3LYP methodology, have been compared with the present experimental data, where there is generally good agreement.  相似文献   

9.
The Fourier transform infrared spectrum of gaseous thiophene, C4H4S, has been recorded in the 600-1200 cm−1 spectral region with a resolution of ca. 0.0030 cm−1. Five fundamental bands ν13 (B1, 712.1 cm−1), ν7 (A1; 840.0 cm−1), ν6 (A1; 1036.4 cm−1), ν5 (A1; 1081.5 cm−1) and ν19 (B2; 1084.0 cm−1) have been analysed by the standard Watson model (A-reduction). Ground state rotational and quartic centrifugal distortion constants have been obtained from a simultaneous fit of ground state combination differences from four of these bands and previous microwave transitions. Upper state spectroscopic constants have been obtained for all five bands from single band fits using the Watson model. A strong c-Coriolis resonance perturbs the close lying ν5 and ν19 bands. We have analysed this dyad system by a model including first and second order Coriolis resonance using the theoretically predicted Coriolis coupling constant . From this analysis we locate the previously unobserved ν19 band at 1083.969 cm−1. The rotational constants, ground state quartic centrifugal distortion constants, anharmonic frequencies, and vibration-rotational constants (α-constants) predicted by quantum chemical calculations using a cc-pVTZ basis with B3LYP methodology, are compared with the present experimental data, where there is generally good agreement. A complete set of anharmonic frequencies and α-constants for all fundamental levels of the molecule is given.  相似文献   

10.
High resolution Fourier transform spectra of a sample of sulfur dioxide, enriched in 34S (95.3%). were completely analyzed leading to a large set of assigned lines. The experimental levels derived from this set of transitions were fit to within their experimental uncertainties using Watson-type Hamiltonians. Precise band centers, rotational and centrifugal distortion constants were determined. The following band centers in cm−1 were obtained: ν0(3ν2)=1538.720198(11), ν0(ν1 + ν3)=2475.828004(29), ν0(ν1 + ν2 + ν3)=2982.118600(20), ν0(2ν3)=2679.800919(35), and ν0(2ν1 + ν3)=3598.773915(38). The rotational constants obtained in this work have been fit together with the rotational constants of lower-lying vibrational states [W.J. Lafferty, J.-M. Flaud, R.L. Sams, EL Hadjiabib, J. Mol. Spectrosc. 252 (2008) 72-76] to obtain equilibrium constants as well as vibration-rotation constants. These equilibrium constants have been fit together with those of 32S16O2 [J.-M. Flaud, W.J. Lafferty, J. Mol. Spectrosc. 16 (1993) 396-402] leading to an improved equilibrium structure. Finally the observed band centers have been fit to obtain anharmonic rotational constants.  相似文献   

11.
High-resolution infrared spectra of boron trifluoride, enriched to 99.5 at. % 11B, have been measured from 400 to 1650 cm−1. In that region we have identified and analyzed 16 absorption bands attributed to the three fundamental bands, two combination bands, 10 hot bands, and one difference band. All possible states were accessed in this region through direct transitions either from the ground state or as hot bands from thermally populated levels. The spectral resolution of the measurements varied from 0.0015 to 0.0020 cm−1. An improved set of ground state rotational constants and rovibrational constants for the infrared-active fundamental vibrations have been determined from over 32 000 assigned transitions. This study resulted in the first direct characterization of the infrared-inactive ν1 state of 11BF3 leading to values for ν1, , and of 885.843205(24), 0.000678548(53), and 0.000337564(66) cm−1, respectively. The Fermi resonance perturbation between the E′ states ν3 and 3ν4 (l = ±1) was further elucidated by observation of hot band transitions to both the 3ν4 (l = ±1) and 3ν4 (l = ±3) states. Several other resonances were also found including the weak rotational interaction, between the state 2ν2 and the E′ state of ν1 + ν4.  相似文献   

12.
The Fourier transform gas-phase IR spectrum of 1,3,4-thiadiazole, C2H2N2S, has been recorded with a resolution of ca. 0.003 cm−1 in the 800-1500 cm−1 spectral region. Five fundamental bands ν2(A1; 1391.9 cm−1), ν4(A1; 964.4 cm−1), ν5(A1; 894.6 cm−1), ν9(B1; 821.5 cm−1), and ν14(B2; 898.4 cm−1) have been analysed using the Watson model. Ground state rotational and quartic centrifugal distortion constants as well as upper state spectroscopic constants have been obtained from fits. The ν4 and ν9 bands are unperturbed while a strong c-Coriolis resonance perturbs the close-lying ν5 and ν14 bands. This dyad system has been analysed by a model including first and second order c-Coriolis resonance using the theoretically predicted Coriolis coupling constant . The ν2 band is strongly perturbed by a local resonance, and we obtain a set of spectroscopic parameters using a model including second order a-Coriolis resonance with the inactive ν10 + ν14 band. Ground state rotational and quartic centrifugal distortion constants, anharmonic frequencies, and vibration-rotational α-constants predicted by quantum chemical calculations using a cc-pVTZ basis and B3LYP methodology, have been compared with the present experimental data, where there is generally good agreement.  相似文献   

13.
Infrared spectra of spiropentane (C5H8) have been recorded at a resolution (0.002 cm−1) sufficient to resolve for the first time individual rovibrational lines. This initial report presents the ground state rotational constants for this molecule determined from the detailed analysis of the ν16 (b2) parallel band at 993 cm−1. In addition, the determination included more than 2000 ground state combination-differences deduced from partial analyses of four other infrared-allowed bands, the ν24(e) perpendicular band at 780 cm−1 and three (b2) parallel bands at 1540 cm−1 (ν14), 1568 cm−1 (ν5 + ν16), and 2098 cm−1 (ν5 + ν14). In each of the latter four cases, the spectra show complications; in the case of ν24, these complications are due to rotational l-type doublings, and in the case of the parallel bands, the spectral complexities are due to Fermi resonance and Coriolis interactions of the upper states with nearby levels. The unraveling of these is underway but the assignment of many of these transitions permit the confident use of the ground state differences in determining the following constants for the ground state (in units of cm−1): B0 = 0.1394741(1), DJ = 2.461(1) × 10−8, DJK = 8.69(3) × 10−8. For the unperturbed ν16 fundamental, more than 3000 transitions were fit and the band origin was found to be at 992.53793(3) cm−1. The numbers in parentheses are the uncertainties (two standard deviations) in the value of the last digit of the constants. Surprisingly, the very accurate B0 value measured here is lower than the value (0.1418 cm−1) calculated from an electron diffraction structure, instead of being higher, as expected. Where possible, the rovibrational results are compared with those computed at the anharmonic level using the B3LYP density functional method with a cc-pVTZ basis set. These too suggest that the electron diffraction results are in question.  相似文献   

14.
The 2,3-13C2 isotopomer of butadiene was synthesized, and its fundamental vibrational fundamentals were assigned from a study of its infrared and Raman spectra aided with quantum chemical predictions of frequencies, intensities, and Raman depolarization ratios. For two C-type bands in the high-resolution (0.002 cm−1) infrared spectrum, the rotational structure was analyzed. These bands are for ν11 (au) at 907.17 cm−1 and for ν12 (au) at 523.37 cm−1. Ground state and upper state rotational constants were fitted to Watson-type Hamiltonians with a full quartic set of centrifugal distortion constants and two sextic ones. For the ground state, A0 = 1.3545088(7) cm−1, B0 = 0.1469404(1) cm−1, and C0 = 0.1325838(2)  cm−1. The small inertial defects of butadiene and two 13C2 isotopomers, as well as for five deuterium isotopomers as previously reported, confirm the planarity of the s-trans rotamer of butadiene.  相似文献   

15.
The Lamb-dip technique has been applied to the observation of the J = 1 ← 0 transition of DF: for the first time, the hyperfine structure due to D and F have been resolved by using microwave spectroscopy. The high accuracy of this technique allows us to provide hyperfine parameters that are in very good agreement with those obtained from molecular beam experiment. In addition, our frequencies together with the unresolved ones up to J″ value of 47 allow us to provide the most accurate ground state rotational constants of DF known at the moment. Furthermore, due to the presence of a relevant number of strong crossing resonances, the J = 1 ← 0 transition of DF can be considered an illustrative case to show how they modify the shape of Lamb-dip spectra.  相似文献   

16.
The vibrational structure of the electronic state of C3 in the region 26 000-30 775 cm−1 has been re-examined, using laser excitation spectra of jet-cooled molecules. Rotational constants and vibrational energies have been determined for over 60 previously-unreported vibronic levels; a number of other levels have been re-assigned. The vibrational structure is complicated by interactions between levels of the upper and lower Born-Oppenheimer components of the state, and by the effects of the double minimum potential in the Q3 coordinate, recognized by Izuha and Yamanouchi [16]. The present work shows that there is also strong anharmonic resonance between the overtones of the ν1 and ν3 vibrations. For instance, the levels 2 1+ 1 and 0 1 + 3 are nearly degenerate in zero order, but as a result of the resonance they give rise to two levels 139 cm−1 apart, centered about the expected position of the 2 1+ 1 level. With these irregularities recognized, every observed vibrational level up to 30 000 cm−1 (a vibrational energy of over 5000 cm−1) can now be assigned. A vibronic level at 30181.4 cm−1, which has a much lower B′ rotational constant than nearby levels of the state, possibly represents the onset of vibronic perturbations by the electronic state; this state is so far unknown, but is predicted by the ab initio calculations of Ahmed et al. [36].  相似文献   

17.
Fully fluorinated compounds, known as perfluorinated compounds, are widely used in industrial applications. Recently, some perfluorinated acids have been detected in the atmosphere and the tissues of animals. Some perfluorocarboxylic acids are emitted to the atmosphere from the thermolysis of fluoropolymers and the degradation of fluorotelomer alcohols. The gas phase vibrational spectrum of a representative perfluorocarboxylic acid in the region between 1000 and 11 000 cm−1 has been investigated, with emphasis on the vibrational overtone spectrum in the near-IR region. The most intense transition in the fundamental spectrum is the CF3 stretch while in the overtone region, the O-H stretch carries most of the intensity. A comparison of the perfluorocarboxylic acid vibrational spectrum with the hydrocarbon analog acid is discussed.  相似文献   

18.
The room temperature absorption spectrum of formaldehyde, H2CO, from 6547 to 6804 cm−1 (1527-1470 nm) is reported with a spectral resolution of 0.001 cm−1. The spectrum was measured using cavity-enhanced absorption spectroscopy (CEAS) and absorption cross-sections were calculated after calibrating the system using known absorption lines of H2O and CO2. Several vibrational combination bands occur in this region and give rise to a congested spectrum with over 8000 lines observed. Pressure broadening coefficients in N2, O2, and H2CO are reported for an absorption line at 6780.871 cm−1, and in N2 for an absorption line at 6684.053 cm−1.  相似文献   

19.
To gain more information about the highly excited rotational states of the Δv = 1 sequence of OD vibration-rotation bands, the spectrum has been produced in an inductively coupled plasma discharge and measured with a Fourier transform spectrometer between 1670 and 5768 cm−1. Along with the extension of 1–0 band, we have been successful in recording the 2–1 band for the first time. A nonlinear least square fit of these bands yielded equilibrium molecular parameters forv = 0, 1 and 2 levels with a standard deviation of 0·0032 cm−1. The centrifugal distortion parameters show a systematic vibrational dependence.  相似文献   

20.
Infrared spectra of bicyclo[1.1.1]pentane (C5H8) have been recorded at a resolution (0.0015 cm−1) sufficient to resolve for the first time individual rovibrational lines. This initial report presents the ground state constants for this molecule determined from the detailed analysis of three of the ten infrared-allowed bands, ν14(e′) at 540 cm−1, ν17 (a2″) at 1220 cm−1, ν18(a2″) at 832 cm−1, and a partial analysis of the ν11(e′) band at 1237 cm−1. The upper states of transitions involving the lowest frequency mode, ν14(e′), show no evidence of rovibrational perturbations but those for the ν17 and ν18 (a2″) modes give clear indication of Coriolis coupling to nearby e′ levels. Accordingly, ground state constants were determined by use of the combination-difference method for all three bands. The assigned frequencies provided over 3300 consistent ground state difference values, yielding the following constants for the ground state (in units of cm−1): B0 = 0.2399412(2), DJ = 6.024(6) × 10−8, DJK = −1.930(21) × 10−8. For the unperturbed ν14(e′) fundamental, more than 3500 transitions were analyzed and the band origin was found to be at 540.34225(2) cm−1. The numbers in parentheses are the uncertainties (two standard deviations) in the values of the constants. The results are compared with those obtained previously for [1.1.1]propellane and with those computed at the ab initio anharmonic level using the B3LYP density functional method with a cc-pVTZ basis set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号