首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new approach is proposed to explain the strong difference between the induction periods (nucleation time-lags) obtained from nucleation rate measurements and from crystal growth experiments for lithium silicate glasses; and their similar magnitude for a Na2O · 2CaO · 3SiO2 glass. For these two glass families, the time-lags for nucleation estimated from crystal growth kinetics were compared with those directly obtained from nucleation experiments. A theoretical analysis was performed employing analytical solutions of the Frenkel-Zeldovich equation. In such analysis, the frequently assumed condition of size-independence of the thermodynamic properties of the crystallites was used. Provided this assumption is correct, time-lag data obtained in the two above mentioned ways should coincide. Consequently the significant difference between the values of nucleation time-lag for lithium silicate glasses from nucleation and growth data gives a strong indirect evidence for the deviation of the properties of critical nuclei from the respective parameters characterizing the state of the newly evolving macrophase. For Na2O · 2CaO · 3SiO2 glass at intermediate stages of crystallization we show that the average composition of the growing crystals is close to that of the near-critical nuclei. The fact that the nucleation and growth rates of this soda-lime-silica glass refer to the same phase provides an explanation for the similarity of the induction periods estimated from nucleation and growth experiments.  相似文献   

2.
Room temperature electron spin resonance (ESR) spectra and temperature dependent magnetic susceptibility measurements have been performed to investigate the effect of iron ions in 41CaO · (52 − x)SiO2 · 4P2O5 · xFe2O3 · 3Na2O (2 ? x ? 10 mol%) glasses. The ESR spectra of the glass exhibited the absorptions centered at g ≈ 2.1 and g ≈ 4.3. The variation of the intensity and linewidth of these absorption lines with composition has been interpreted in terms of variation in the concentration of the Fe2+ and Fe3+ in the glass and the interaction between the iron ions. The magnetic susceptibility data were used to obtain information on the relative concentration and interaction between the iron ions in the glass.  相似文献   

3.
The influences of different alkali and alkali-earth oxide substitutions on the properties of lithium-iron-phosphate (LIP) glasses have been studied. Na2O, K2O, MgO, CaO and BaO were used to substitute Li2O to prepare LIP glasses with molar compositions of (20 − x)Li2O − xR2O(RO) − 30Fe2O3 − 50P2O5 (x = 2.4, 4, 5.6 and 7.2). The glass transition temperature (Tg) was determined by the differential thermal analysis technique. The density and chemical durability of the prepared glasses were measured based on the Archimedes principle and the weight losses after the glasses were boiled in water. The results show that Tg decreases with the initial substitutions, whereas the density and chemical durability increase. The diminution of the aggregation effect of Li+ ions on the glass structure due to the decrease in Li+ concentration, the larger molecule weights of the substitutes, the mixed-alkali and depressing effects as well the slower mobility of substitute ions mainly contribute to the initial changes in Tg, density and chemical durability of the LIP glasses, respectively. Further increasing the amounts of substitutes brings about increasing diminution of the aggregation effect of Li+ ions and breakage of the glass network on the one hand and increasing amounts of substitutes with larger molecule weights and ion radii on the other hand. Both aspects influence the glass properties oppositely and consequently non-monotonic variations in the properties of LIP glasses with the substitutions are observed.  相似文献   

4.
Transparent glasses composition of which can be expressed by the formula: (100−x) · (K2O · 2TiO2 · P2O5) · x(K2O · 2B2O3 · 7SiO2), where x=5, 10, 15 and 20 mol% (KTP-xKBS), were obtained by melt quenching technique. The structure and crystallization behavior of these glasses have been examined by Fourier transform infrared spectroscopy, differential thermal analysis and X-ray diffraction. In spite of their nominal composition, the studied glasses exhibit a similar oxygen polyhedra distribution. However, significant differences were found in the trigonal BO3 units amount. During DTA runs all the examined glasses devitrify in two steps. In the former, very small crystals of an unknown crystalline phase are produced. In KTP-5KBS and KTP-10KBS glasses anatase phase was also detected. Attempts were made in order to identify the unknown phase (UTP) for which a AB3(XO4)2(OH)6 Crandallite-type structure was proposed where the A, B and X sites were occupied by K, Ti and/or Al, and P, respectively. In the second devitrification step the crystallization of the KTiOPO4 phase occurs while the UTP phase previously formed disappears. Isothermal heat treatments performed at temperature just above Tg have allowed one to obtain transparent crystal-glass nanocomposites, formed by crystalline nanostructure of the UTP phase uniformly dispersed in the amorphous matrix.  相似文献   

5.
Saswati Ghosh 《Journal of Non》2008,354(34):4081-4088
Several compositions based on BaO-CaO-Al2O3-SiO2 (BCAS) glass system have been studied in this investigation to see their applicability as sealant for solid oxide fuel cell (SOFC). The glasses as well as the corresponding glass-ceramics have been systematically characterized by differential thermal analysis, dilatometry, X-ray diffractometry, electron microscopy and impedance analysis to examine their suitability as sealant. While the glass transition temperature (Tg) determined from DTA are within 600-665 °C, the coefficient of thermal expansion (CTE) can be tailored between 9.5 and 13.0 × 10−6 K−1. These glasses are found to be well adhered with metallic interconnects, such as commercial ferritic steel (Crofer22APU), at an optimum sealing temperature of 850 °C. The shrinkage behavior of the developed glasses in their pellet form has also been investigated. The resistivities of the glass-ceramics, as obtained from impedance analysis, are found to be within 104-106 Ω cm at 800 °C. Under sandwiched condition between two metals, some of the developed compositions are found to maintain this high resistivity even after 100 h of operation. One of the glass compositions has shown a low leak-rate of the order of ∼10−7 Pa m2 s−1.  相似文献   

6.
Robert Carl 《Journal of Non》2007,353(3):244-249
Glasses with the compositions xNa2O · 10MgO · (90 − x)SiO2, 10Na2O · xMgO · (90 − x)SiO2, 5Na2O · 15MgO · xAl2O3 · (80 − x)SiO2, xNa2O · 10MgO · 10Al2O3 · (80 − x)SiO2, 10Na2O · 10MgO · xAl2O3 · (80 − x)SiO2, 10Na2O · 5MgO · 10Al2O3 · (80 − x)SiO2 were melted and studied using UV-vis-NIR spectroscopy in the wavenumber range from 5000 to 30 000 cm−1. At [Al2O3] > [Na2O], the UV-cut off is strongly shifted to smaller wavenumbers and the NIR peak at around 10 000 cm−1 attributed to Fe2+ in sixfold coordination gets narrower. Furthermore, the intensity of the NIR peak at 5500 cm−1 increases. This is explained by the incorporation of iron in the respective glass structures.  相似文献   

7.
Glasses with the basic compositions 10Na2O · 10CaO · xAl2O3 · (80 − x)SiO2 (x=0, 5, 15, 25) and 16Na2O · 10CaO · xAl2O3 · (74 − x)SiO2 (x=0, 5, 10, 15, 20) doped with 0.25-0.5 mol% SnO2 were studied using square-wave-voltammetry at temperatures in the range from 1000 to 1600 °C. The voltammograms exhibit a maximum which increases linearly with increasing temperature. With increasing alumina concentration and decreasing Na2O concentration the peak potentials get more negative. Mössbauer spectra showed two signals attributed to Sn2+ and Sn4+. Increasing alumina concentrations did not affect the isomer shift of Sn2+; however, they led to increasing quadrupole splitting, while in the case of Sn4+ both isomer shift and quadrupole splitting increased. A structural model is proposed which explains the effect of the composition on both the peak potentials and the Mössbauer parameters.  相似文献   

8.
E. Mansour 《Journal of Non》2011,357(5):1364-3380
Fourier transformation infrared spectra, density and DC electrical conductivity of 30Li2O · xCeO2⋅(70 − x)B2O3 glasses, where x ranged between 0 and 15 mol%, have been investigated. The results suggested that CeO2 plays the role of network modifier up to 7.5 mol%. At higher concentrations it plays a dual role; where most of ceria plays the role of network former. The density was observed to increase with increasing CeO2 content. The effect on density of the oxides in the glasses investigated is in the succession: B2O3 < Li2O < CeO2. Most of CeO2 content was found to be associated with B2O3 network to convert BO3 into B O4 units. The contribution of Li+ ions in the conduction process is much more than that due to small polarons. The conductivity of the glasses is mostly controlled by the Li+ ions concentration rather than the activation energy for CeO2 > 5 mol%. Lower than 5 mol% CeO2 the conductivity is controlled by both factors. The dependence of W on BO4 content supports the idea of ionic conduction in these glasses.  相似文献   

9.
The well known and characterized fast ion conducting (FIC) LiI + Li2S + GeS2 glass-forming system has been further optimized for higher ionic conductivity and improved thermal and chemical stability required for next generation solid electrolyte applications by doping with Ga2S3 and La2S3. These trivalent dopants are expected to eliminate terminal and non-bridging sulfur (NBS) anions thereby increasing the network connectivity while at the same time increasing the Li+ ion conductivity by creating lower basicity [(Ga or La)S4/2] anion sites. Consistent with the finding that the glass-forming range for the Ga2S3 doped compositions is larger than that for the La2S3 compositions, the addition of Ga2S3 is found to eliminate NBS units to create bridging sulfur (BS) units that not only gives an improvement to the thermal stability, but also maintains and in some cases increases the ionic conductivity. The compositions with the highest Ga2S3 content showed the highest Tgs of ∼325 °C. The addition of La2S3 to the base glasses, by comparison, is found to create NBS by forming high coordination octahedral LaS63− sites, but yet still improved the chemical stability of the glass in dry air and retained its high ionic conductivity and thermal stability. Significantly, at comparable concentrations of Li2S and Ga2S3 or La2S3, the La2S3-doped glasses showed the higher conductivities. The addition of the LiI to the glass compositions not only improved the glass-forming ability of the compositions, but also increased the ionic conductivity glasses. LiI concentrations from 0 to 40 mol% improved the conductivities of the Ga2S3 glasses from ∼10−5 to ∼10−3 (Ω cm)−1 and of the La2S3 glasses from ∼10−4 to ∼10−3 (Ω cm)−1 at room temperature. A maximum conductivity of ∼10−3 (Ω cm)−1 at room temperature was observed for all of the glasses and this value is comparable to some of the best Li ion conductors in a sulfide glass system. Yet these new compositions are markedly more thermally and chemically stable than most Li+ ion conducting sulfide glasses. LiI additions decreased the Tgs and Tcs of the glasses, but increased the stability towards crystallization (Tc − Tg).  相似文献   

10.
The spin Hamiltonian parameters (g factors g, g and the hyperfine structure constants A, A) for the Cu2+ centers in the lithium potassium borate (LKB) glasses xLi2O·(30 − x)·K2O·70B2O3 (0 ≤ x ≤ 25) were theoretically studied using the high-order perturbation formulas of these parameters for a 3d9 ion in a tetragonally elongated octahedron. The [CuO6]10− clusters in the LKB glasses are found to suffer the relative elongations of about 3% along the tetragonal axis due to the Jahn-Teller effect. The concentration dependences of the g factors are illustrated by the approximately linear decrease of the cubic field parameter Dq as well as the increases of the covalency factor N and the relative elongation ratio ρ due to the slight expansion of the cell volume or bond lengths with increasing the Li2O concentration x. Meanwhile, the slow non-linear increases of the hyperfine structure constants are described as the rough exponential increase of the core polarization constant κ with x due to the increase of the tetragonality of the systems. The theoretical spin Hamiltonian parameters and their concentration dependences show good agreement with the experimental data. To evaluate validity and applicability of the present theoretical model and formulas, the EPR results of the Cu2+ centers in similar lithium sodium borate (LNB) xLi2O·(30 − x)·Na2O·70B2O3 (5 ≤ x ≤ 25 mol%) glasses are also analyzed and compared with those in the LKB systems using the uniform model and formulas.  相似文献   

11.
The physical and structural properties of Co2+ doped 20ZnO + xLi2O + (30 − x)Na2O + 50B2O3 (5 ≤ × ≤ 25) (ZLNB) glasses have been studied and correlated. The physical and structural parameters of all the glasses are evaluated and a non-linear behavior is observed. No sharp peaks are observed in XRD patterns of the glass samples which confirm the amorphous nature. FT-IR spectra of ZLNB glasses reveal diborate units in borate network. The optical absorption spectra suggest the site symmetry of Co2+ in the glasses is near octahedral. Crystal field and inter-electronic repulsion parameters are also evaluated. The optical band gap and Urbach energies exhibit the mixed alkali effect. All the samples are found to be strong and stable in structure with low values of Urbach energy which lie between 0.027 eV and 0.039 eV. The correlation between densities and Urbach energies of Co2+ doped ZLNB glasses with respect to Li2O content suggest a changeover conduction mechanism from electronic to ionic, with a diffusivity crossover point at x = 15 mol%.  相似文献   

12.
M. Fábián  E. Sváb  E. Veress 《Journal of Non》2008,354(28):3299-3307
A neutron diffraction structure study has been performed on multi-component borosilicate glasses with compositions (65 − x)SiO2 · xB2O3 · 25Na2O · 5BaO · 5ZrO2, x = 5-15 mol%. The structure factor has been measured up to a rather high momentum transfer value of 30 Å−1, which made high r-space resolution available for real space analyses. Reverse Monte Carlo simulation was applied to calculate the partial atomic pair correlation functions, nearest neighbor atomic distances and coordination number distributions. The Si-O network consists of tetrahedral SiO4 units with characteristic first neighbor distances at rSi-O = 1.60 Å and rSi-Si = 3.0 Å. The boron environment contains two well-resolved B-O distances at 1.40 and 1.60 Å and both 3- and 4-fold coordinated B atoms are present. A chemically mixed network structure is proposed including [4]B-O-[4]Si and [3]B-O-[4]Si chain segments. The O-O and Na-O distributions suggest partial segregation of silicon and boron rich regions. The highly effective ability of Zr to stabilize glassy and hydrolytic properties of sodium-borosilicate materials is interpreted by the network-forming role of Zr ions.  相似文献   

13.
The thermal properties (expansion, Tg and TSOFT.) of glasses, having 56-66% P2O5, 14.8-34.2% Fe2O3 and 2-25 wt% additions of SiO2, Al2O3, Na2O and UO2, were comparatively estimated from dilatometric measurements in similar conditions. The Tg reversibility was clearly verified by varying the heating rates between 1 and 5 °C min−1. From linear equations fits of the various glass properties as functions of the six components it is suggested the iron, sodium and uranium oxides decrease the thermal expansion (for 50 < T ? 300 °C), Tg and TSOFT. From DTA/XRD analysis of three glasses it was confirmed the crystallization tendency decreased with increasing the UO2 level in the glasses. Leaching test data for two compositions containing Na2O suggest addition of UO2 increases the chemical durability of the related glass. The roles of UO2, Na2O and Fe-oxide species as structural components of the glass network are discussed.  相似文献   

14.
S. Rada  E. Culea 《Journal of Non》2011,357(7):1724-1728
Glasses in the quaternary system 0.05Al2O3·0.95[xGd2O3·(100-x)(7GeO2·3PbO)] with 0 ≤ x ≤ 40 mol% have been prepared from melt quenching method. In this paper, we investigated structural and optical properties in gadolinium-alumino-lead-germanate glasses through investigations of FTIR (Fourier-Transform Infrared Spectroscopy) and UV-VIS (Ultra-Violet) spectroscopy.The observations presented in these mechanisms show that by increasing Gd2O3 content up to 40 mol%, the glass network modification has taken place mainly in the germanate part, while the excess of oxygen can be accommodated in the host network by the creation of shorter rings of [Ge2O7] structural units and the formation of [AlO4] structural units. The affinity pronounced of the gadolinium cations towards germanate structural units produces the formation of the Gd2Ge2O7 crystalline phase.The UV-VIS spectroscopy data show the charge transfer transitions of Pb+ 2-O− 2, Al+ 3-O− 2 and Gd+ 3-O− 2, respectively. The additional absorption in the range of 300 to 600 nm was attributed to other types of defects such as: non-bridging oxygen ions, change in valency of ions and other color centers.The values of the direct optical band gap of the glasses are determined from the optical absorption spectra. By increasing Gd2O3 content in the glass matrix, the optical band gap energy increases indicating changes of the lattice parameters by Gd2O3 incorporation.  相似文献   

15.
As part of ongoing studies to evaluate relationships between structure and rates of dissolution of silicate glasses in aqueous media, sodium borosilicate glasses of composition Na2O·xB2O3·(3 − x)SiO2, with x ≤ 1 (Na2O/B2O3 ratio ≥ 1), were analyzed using deep-UV Raman spectroscopy. Results were quantified in terms of the fraction of SiO4 tetrahedra with one non-bridging oxygen (Q3) and then correlated with Na2O and B2O3 content. The Q3 fraction was found to increase with increasing Na2O content, in agreement with studies on related glasses, and, as long as the value of x was not too high, this contributed to higher rates of dissolution in single pass flow-through testing. In contrast, dissolution rates were less strongly determined by the Q3 fraction when the value of x was near unity, and appeared to grow larger upon further reduction of the Q3 fraction. Results were interpreted to indicate the increasingly important role of network hydrolysis in the glass dissolution mechanism as the BO4 tetrahedron replaces the Q3 unit as the charge-compensating structure for Na+ ions. Finally, the use of deep-UV Raman spectroscopy was found to be advantageous in studying finely powdered glasses in cases where visible Raman spectroscopy suffered from weak Raman scattering and fluorescence interference.  相似文献   

16.
The optical properties of Cr3+ ions in lithium metasilicate (Li2O · SiO2) transparent glass-ceramics were investigated. The main crystalline phase precipitated was the lithium metasilicate (Li2O · SiO2) crystal. The percent crystallinity and crystalline size were ranging 65-75% and 20-35 nm, respectively. The color changes drastically to deep pink from emerald green upon crystallization. New and strong absorption bands appeared and the absorption intensity increases by about 10 times that in glass. These new absorption bands are found to be derived from Cr3+ ions in octahedral sites in the lithium metasilicate crystal lattice. Cr3+ ions substitute for three Li+ ions and occupy the distorted octahedral site between single [SiO4]n chains of lithium metasilicate crystal. The ligand field parameters can be estimated: 10Dq = 13 088 cm−1, B = 453 cm−1, Dq/B = 2.89 and C = 2036 cm−1. The near-infrared luminescence centered at 1250 nm was not detected in the deep pink glass-ceramics unlike emerald green glass.  相似文献   

17.
Kaushik Das  K.B.R. Varma 《Journal of Non》2008,354(32):3793-3798
The structure and mechanical properties of multifunctional lithium tetra-borate based glasses and glass-ceramics of the system (100 − x) Li2B4O7−x(BaO-Bi2O3-Nb2O5) with x = 10, 20 and 30 in molar ratio, have been characterized. Nano- and micro-indentation techniques were employed to evaluate the elastic modulus, hardness and toughness of the as-cast and annealed glasses. These were complemented with detailed structural investigations using X-ray diffraction, microscopy (optical, scanning electron and high resolution transmission electron microscopies) and nuclear magnetic resonance spectroscopy. These investigations reveal a smooth variation of the mechanical properties with composition except for the composition corresponding to x = 20. This deviation has been attributed to subtle changes in the glass-structure due to amorphous phase-separation and heat-treatment-assisted nano-crystallization.  相似文献   

18.
Z. Pan  A. Ueda  M. Hays  R. Mu  S.H. Morgan 《Journal of Non》2006,352(8):801-806
An erbium doped germanate-oxyfluoride glass 60GeO2 · 20PbO · 10PbF2 · 10CdF2 (GPOF) and a tellurium-germanate-oxyfluoride glass 30TeO2 · 30GeO2 · 20PbO · 10PbF2 · 10CdF2 (TGPOF) were prepared in the bulk form. By appropriate heat treatment of the as-prepared glasses above, transparent glass-ceramics were obtained with the formation of β-PbF2 nanocrystals in the glass matrix confirmed by X-ray diffraction. Optical absorption and photoluminescence measurements were performed on as-prepared glass and glass-ceramics. The luminescence of Er3+ ions in transparent glass-ceramics revealed sub-band splitting generally seen in a crystal host. The intensity of red and near infrared luminescence significantly increased in transparent glass-ceramic compared to that in as-prepared glass. Two luminescence bands at 758 nm from 4F7/2 → 4I13/2 and at 817 nm from 2H11/2 → 4I13/2 transitions were observed from transparent glass-ceramic but cannot be seen from the corresponding as-prepared glass. These results are attributed to the change of ligand field of Er3+ ions and the decrease of effective phonon energy when Er3+ ions were incorporated into the precipitated β-PbF2 nanocrystals.  相似文献   

19.
A high-energy X-ray diffraction study has been carried out on a series of 0.5Li2S + 0.5[(1 − x)GeS2 + xGeO2] glasses with x = 0.0, 0.1, 0.2, 0.4, 0.6 and 0.8. Structure factors were measured to wave vectors as high as 30 Å−1 resulting in atomic pair distribution functions with high real space resolution. The three dimensional atomic-scale structure of the glasses was modeled by reverse Monte Carlo simulations based on the diffraction data. Results from the simulations show that at the atomic-scale 0.5Li2S + 0.5[(1 − x)GeS2 + xGeO2] glasses may be viewed as an assembly of independent chains of (Li+-S)2GeS2/2 and (Li+-O)2GeO2/2 tetrahedra as repeat units, where the Li ions occupy the open space between the chains. The new structure data may help understand the reasons for the sharp maximum in the Li+ ion conductivity at x ∼ 0.2.  相似文献   

20.
Sub-critical crack growth in binary sodium germanate glass was investigated over a wide range of the crack velocities, 10−7-10−2 m s−1, by using small-size specimens with double cleavage drilled compression configuration. For evaluating the intrinsic sub-critical crack growth, crack initiation and subsequent propagation of the crack were performed in heptane. With increasing Na2O content in sodium germanate glass, sub-critical crack growth curve shifted toward higher stress intensity factors first up to 10 mol% Na2O, but more addition of Na2O caused the curve to shift to lower stress intensity factor regions. In other words, fracture toughness shows a maximum at the composition of 10Na2O·90GeO2, whose value is 1.07 MPa m1/2. This compositional dependence of fracture toughness originates from the so-called germanate anomaly. On the other hand, the slope of sub-critical crack growth curve for the glass containing >10 mol% Na2O was much shallower than that for soda-lime glass. These glasses are very fatigable even in inert condition. It is considered that this fatigue behavior can be caused by the microscopic structural variation, which is the presence of GeO6 units in GeO2 glass network, and that these units can be the fatigue crack path.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号