首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rotational spectra have been observed for BiO produced in a DC discharge through a low pressure mixture of O2, Ar, and Bi vapor. Because of the highly non-thermal distribution of states, it has been possible to observe spectra arising from the X12Π1/2 level up to v = 9 and for the X22Π3/2 level up to v = 5 near 10 538 cm−1. Precise rotational and hyperfine parameters have been determined for the observed states. By using available near infrared (NIR) data in a merged fit, the 0-0 and 1-1 fine structure intervals have been more precisely determined. Although the quality of the fit is very good, the interpretation of the hyperfine constants is complicated by relativistic effects and the interaction of the X2 state with A14Π3/2 state. The magnetic and quadrupole coupling constants will be compared with those of the Bi atom and related molecules.  相似文献   

2.
The long wavelength end of the electronic spectrum of CuCl2, between 636 and 660 nm, has been recorded in the gas phase by laser-excitation spectroscopy using a sample prepared at low temperatures (ca. 10 K) in a free-jet expansion. Under these conditions, it is possible to resolve vibrational, rotational, and even Cu hyperfine structure. The (0, 0) band of the E2Πu-X2Πg transition has been identified with an origin at 15546.286(3) cm−1 for 63Cu35Cl2. The observation and analysis of bands involving vibrationally excited levels has allowed the determination of all three vibrational intervals for the E2Πu state (ν1 = 335.88 cm−1, ν2 = 112.42 cm−1, and ν3 = 482.17 cm−1, 63Cu35Cl2). In addition, two other, unrelated transitions have been identified in the same narrow wavelength region. This, combined with the observation of local perturbations of the rotational structure in various bands, reveals the presence of other closely lying electronic states in the same energy region.  相似文献   

3.
The electronic emission spectrum of the A3Π0-X1Σ+ and B3Π1-X1Σ+ transitions of Gallium monochloride molecule (69GaCl) has been recorded on BOMEM DA8 Fourier transform spectrometer at an apodized resolution of 0.035 cm−1. The rotational structure of the 0-0, 1-0, 2-1, and 3-2, bands belonging to A-X and 0-0, 0-1, 1-2, and 0-2 bands belonging to B-X transitions has been analyzed and equilibrium rotational constants for the X1Σ+ and A3Π0 states have been obtained. For the first time we are able to determine the Λ-doubling constants in the v = 0 and 1 levels of the B3Π1 state.  相似文献   

4.
Near-infrared emission spectra of the X22Π3/2 → X12Π1/2 fine structure transitions of PbH and PbD have been investigated by high-resolution Fourier-transform spectrometry. The fine structure splitting in the X2Πr ground state of 208PbH was found to be 6924.4926(4) cm−1. Accurate rotational constants for the v = 0 and 1 vibrational levels of the X2Πr states of 208PbH, 207PbH, 208PbD and 207PbD and hyperfine structure constants for the X12Π1/2 states of 207PbH (207PbD) have been derived.  相似文献   

5.
The emission spectrum of NbN has been reinvestigated in the 8000-35 000  cm−1 region using a Fourier transform spectrometer and two groups of new bands were observed. The bands observed in the 18 000-20 000 cm−1 region have been assigned to a new 3Π-X3Δ transition. Three bands with R heads near 19 463.8, 19 659.0 and 19 757.0 cm−1 have been assigned as 0-0 bands of the 3Π2-X3Δ3, 3Π1-X3Δ2 and 3Π-X3Δ1 subbands, respectively, of this new transition. Three additional ΔΩ = 0 bands have been observed in the 24 000-26 000  cm−1 region. A 0-0 band with an R head near 25 409.9 cm−1 has been assigned as a ΔΩ = 0 transition having X3Δ2 as its lower state while two additional bands with heads near 25 518.7 and 25 534.8 cm−1 were found to be ΔΩ = 0 bands having X3Δ1 as the common lower state. Two of these three bands are perhaps subbands of a 3Δ-X3Δ transition. Most of the excited levels are affected by perturbations.  相似文献   

6.
The electronic spectrum of hafnium monofluoride has been investigated from 415 to 725 nm using a laser-ablation/molecular beam laser-induced fluorescence spectrometer. Several electronic systems were observed and data have been recorded at both low and high resolution. High resolution rotational analyses of the [17.4]1.5-X1.5 (0-0), [17.9]2.5-X1.5 (0-0), [19.7]0.5-X1.5 (0-0), [20.0]0.5-X1.5 (0-0), [21.1]2.5-X1.5 (0-0), [22.3]1.5-X1.5 (0-0), and [23.3]0.5-X1.5 (0-0) subbands have been carried out, resulting in accurate values for the ground and excited state effective rotational constants. Furthermore, the rotational analysis of the subbands assigned as [17.4]1.5-X1.5 (1-0) and [17.9]2.5-X1.5 (1-0) allows us to determine values of 589.7569(6) and 588.9076(6) cm−1 for ΔG1/2 [17.4] and ΔG1/2 [17.9], respectively. From dispersed fluorescence data we find that ΔG′′1/2=670(13) cm−1 for the ground state and that another low-lying electronic state lies at ∼2850 cm−1. The data also suggests that a second low-lying electronic state lies at ∼5200 cm−1 above the ground state.  相似文献   

7.
Emission spectra of the A2Π3/2-X2Σ+ (0, 1), (0, 0), and (1, 0) bands and the B2Σ+-X2Σ+ (0, 1), (0, 0), (1, 0), (2, 0), and (3, 1) bands of ScS have been recorded in the 10 000-13 500 cm−1 region at a resolution of 0.05 cm−1 using a Fourier transform (FT) spectrometer. The A2Πr-X2Σ+ (1, 0) band as well as the B2Σ+-X2Σ+ (0, 0) and (1, 0) bands have been recorded at high resolution (±0.001 cm−1) by laser excitation spectroscopy using a supersonic molecular beam source. The FT spectral features range up to N = 148, while those recorded with the laser cover the “low-N” regions. The lines recorded with the laser exhibit splittings due to the 45Sc (I = 7/2) magnetic hyperfine interactions, which are large (∼6.65 GHz) in the X2Σ+ state and much smaller in the B2Σ+ and A2Π states. The energy levels were modeled using a traditional ‘effective’ Hamiltonian approach, and improved spectroscopic constants were extracted and compared with previous determinations and theoretical predictions.  相似文献   

8.
9.
The emission spectrum of the B3Π1-X1Σ+ band-system of the InCl molecule has been recorded on a Fourier transform spectrometer at an apodized resolution of 0.025 cm−1. The rotational structure of 1-0, 2-1, 0-0, 0-1, 1-2, 0-2, and 1-3 bands belonging to the B3Π1-X1Σ+ transition of In35Cl has been analyzed and accurate equilibrium rotational constants of the B3Π1 state, have been obtained. Precise Λ-doubling constants of the B3Π1 state (v=0, 1, and 2) are also reported for the first time.  相似文献   

10.
The visible electronic spectrum of AuO has been recorded at rotational resolution using intracavity laser absorption spectroscopy. Five vibrational bands have been analyzed and assigned as the (0, 0), (1, 0), (2, 0), (3, 0), and (4, 0) bands of the b4Π3/2-X2Π3/2 transition of AuO. The molecular parameters for the newly identified b4Π3/2 state are presented.  相似文献   

11.
The absorption spectrum of the fundamental band of SO+ (X2Π) has been recorded using a mid-infrared tunable diode laser spectrometer with the velocity modulation technique in an AC glow discharge of He/SO2. Forty-two lines of SO+ were identified in the spectral range of 1230-1330 cm−1. The observed rovibrational transitions together with the microwave data published previously were fitted to a standard effective Hamiltonian for 2Π states. Molecular constants for the ground and υ = 1 vibrational states were derived. The band origin was determined to be 1291.5299(27) cm−1.  相似文献   

12.
The (0,0) vibronic band of NiCl system G with a bandhead near 12 961 cm−1 was recorded at high resolution in absorption using intracavity laser spectroscopy (ILS). For the ILS absorption spectra, the NiCl molecules were produced in a nickel hollow cathode, operated with a small amount of CCl4, and line positions were referenced to iodine spectra. Fourier transform (FT) emission spectroscopy was used to record an extensive region of the spectrum used in a vibronic analysis of system G. For the FT spectra, excited NiCl molecules were produced in a high-temperature King-type carbon tube furnace. We show that this transition is the (0,0) vibronic band associated with a newly identified 2Π3/2 excited state and the X2Π3/2 ground state. The molecular constants for the new 2Π3/2 electronic state are derived from the rotational analysis. Improved vibronic constants for the band are obtained from analysis of the FT spectra.  相似文献   

13.
Vibrational bands belonging to the [15.0] 2Δ5/2-A2Δ5/2, [15.0] 2Δ5/2-X2Π3/2, and [15.0] 2Π3/2-X2Π3/2 electronic transitions of NiCl have been observed in the 14 000-16 000 cm−1 region. The [15.0] 2Δ5/2 and [15.0] 2Π3/2 states are identified for the first time. The observed bands have been recorded at high spectral resolution using several techniques, which include intracavity laser spectroscopy (ILS), Fourier transform emission spectroscopy (FTS), and laser induced fluorescence (LIF) spectroscopy. For the ILS absorption spectra, NiCl molecules were produced in a nickel hollow cathode operated with a small amount of CCl4. For the FTS emission spectra, excited NiCl molecules were produced in a King-type carbon tube furnace loaded with NiCl2 and heated to 1600 °C. In the LIF work, NiCl molecules were produced by reacting laser-ablated nickel with PCl3 seeded in argon. Detailed analysis of rotational transition lines indicates that the observed [15.0] 2Δ5/2 and [15.0] 2Π3/2 states are only separated by 10 cm−1 and are interacting with each other. Molecular constants for these newly observed electronic states are reported.  相似文献   

14.
The direct observation and rotational analysis of the (3, 6) band in the comet-tail (A2Πi-X2Σ+) system of CO+ are carried out for the first time employing optical heterodyne and magnetic rotation enhanced velocity modulation spectroscopy. That 193 lines are assigned to this band ranging from 12 100 to 12 370 cm−1 results in most accurate molecular constants by nonlinear least-squares fitting procedure employing the effective Hamiltonians.  相似文献   

15.
The pure rotational spectrum of ZnO has been measured in its ground X1Σ+ and excited a3Πi states using direct-absorption methods in the frequency range 239-514 GHz. This molecule was synthesized by reacting zinc vapor, generated in a Broida-type oven, with N2O under DC discharge conditions. In the X1Σ+ state, five to eight rotational transitions were recorded for each of the five isotopologues of this species (64ZnO, 66ZnO, 67ZnO, 68ZnO, and 70ZnO) in the ground and several vibrational states (v = 1-4). Transitions for three isotopologues (64ZnO, 66ZnO, and 68ZnO) were measured in the a3Πi state for the v = 0 level, as well as from the v = 1 state of the main isotopologue. All three spin-orbit components were observed in the a3Πi state, each exhibiting splittings due to lambda-doubling. Rotational constants were determined for the X1Σ+ state of zinc oxide. The a3Πi state data were fit with a Hund’s case (a) Hamiltonian, and rotational, spin-orbit, spin-spin, and lambda-doubling constants were established. Equilibrium parameters were also determined for both states. The equilibrium bond length determined for ZnO in the X1Σ+ state is 1.7047 Å, and it increases to 1.8436 Å for the a excited state, consistent with a change from a π4 to a π3σ1 configuration. The estimated vibrational constants of ωe ∼ 738 and 562 cm−1 for the ground and a state agreed well with prior theoretical and experimental investigations; however, the estimated dissociation energy of 2.02 eV for the a3Πi state is significantly higher than previous predictions. The lambda-doubling constants suggest a low-lying 3Σ state.  相似文献   

16.
Spectroscopic observations are reported for rhodium monoxide from hollow-cathode emission and laser-induced fluorescence experiments. Eleven bands of Rh16O and 10 of Rh18O, from the [15.8]2Π-X4Σ (b) and [16.0]2Π-X4Σ (b) transitions, have been rotationally analyzed. The ground state constants have been determined as B0 = 0.4132, λ0 = −0.58 and γ0 = −0.102, in cm−1. Rotational and lambda doubling parameters in v = 0, 1, 2, and 3 excited state vibrational levels have also been determined.  相似文献   

17.
The laser-induced fluorescence excitation spectra of jet-cooled CuS molecules have been recorded in the energy range of 17 200-19 500 cm−1. Fourteen observed vibronic bands have been assigned as three transition progressions: A2Σ (v′ = 0-4)-X2Π3/2 (v″ = 0), A2Σ (v′ = 0-4)-X2Π3/2 (v″ = 1), and A2Σ (v′ = 0-3)-X2Π1/2 (v″ = 0). Spectroscopic constants of both the X2Π ground state and the A2Σ excited state of 63CuS and 65CuS were determined by analyzing their rotationally resolved spectra. Furthermore, the lifetimes of most observed bands were measured for the first time.  相似文献   

18.
Linear C3H in its (X2Π) electronic ground state possesses strong Renner-Teller coupling in the two lowest bending modes, ν4 and ν5. The 2Σμ level of the v4 = 1 bending mode is shifted towards lower energies and is supposed to lie only 20.3 cm−1 above the ground state [S. Yamamoto, S. Saito, H. Suzuki, S. Deguchi, N. Kaifu, S. Ishikawa, M. Ohishi, Astrophys. J. 348 (1990) 363]. In the present study, first measurements of ro-vibrational transitions from the 2Π3/2 ground state to the 2Σμ lowest vibrational state were performed using a Terahertz spectrometer equipped with a supersonic jet nozzle. Rotational levels of the 2Π3/2 and v4 = 1(2Σμ) state are close in energy and a crossing of the rotational energy ladders occurs between J = 24.5 and 25.5. A strong vibronic coupling leads to a significant intensity enhancement of 2Π3/2 − 2Σμ ro-vibrational transitions. The search for ro-vibrational transitions was facilitated by measurements on pure rotational transitions in the 2Π1/2, 2Π3/2 and v4 = 1(2Σμ) states, substantially extending the former data set published by Yamamoto et al. Data analysis yields an accurate value for the v4 = 1(2Σμ) energy level which has been found to lie 609.9771(42) GHz or 20.34664(14) cm−1 above the 2Π ground state. Furthermore, the value of the vibronic coupling constant β has been improved significantly and determined as 1231.77(51) MHz. The new set of spectroscopic parameters obtained in the present study permits very reliable frequency predictions into the Terahertz region.  相似文献   

19.
The absorption spectrum of the natural sample of nitrous oxide has been recorded at Doppler limited resolution with a Fourier-transform spectrometer in the spectral range 5000-10 000 cm−1. Ten cold bands (8Σ − Σ and 2Σ − Π), thirteen hot bands (11Π − Π, Σ − Σ, and Δ − Δ) of 14N216O and the 3ν3 band of 14N15N16O have been newly detected. The uncertainty of the line position determination is estimated to be about 0.005 cm−1 for unblended lines. The assignment of the spectrum has been done with the help of the prediction performed within the framework of the polyad model of effective Hamiltonian. The spectroscopic parameters Gv, Bv, Dv, Hv, and qv have been determined for all newly detected bands. The line intensities of 13 weak bands have been measured. The uncertainty of the obtained line intensity values varies from 7 to 13%.  相似文献   

20.
The absorption spectrum of the KAr molecule has been observed with high resolution between 13 032 and 13 077 cm−1 using tunable laser diodes as light sources, a supersonic beam for production of the molecules, and laser-induced fluorescence for detection. In addition, optical-optical double resonance (OODR) experiments have been performed to simplify the spectrum and to get rotational assignment. Altogether, 670 lines due to the transition B2Σ+ ← X2Σ+ have successfully been assigned with vibrational levels of the B state ranging from v = 0 to v = 6. The corresponding energy values were fitted to the well-known Dunham expansion. In addition, we were able to analyse a local perturbation between the vibrational level v = 1 of the B state and v = 14 of the A2Π3/2 state. Unexpected extra lines in the OODR spectra are most probably due to a collision-induced population of other levels. For the equilibrium distance and the well-depth of the B state we obtain from the Dunham expansion 7.03 (8) Å and 26.2 (8) cm−1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号