首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Laser induced fluorescence (LIF) excitation spectrum for the S0 → S1 transition of anthranilic acid molecules deuterated in the substituent groups (COOD, ND2) was investigated. Analysis of the LIF spectrum allowed for the assignment of the six most prominent fundamental in-plane modes of frequencies up to ca. . The experimental results show good correlation with the frequency changes upon deuteration computed with CIS (CI-Singles) and TD-DFT for the S1 state. Deuteration induced red-shifts of the identified fundamental bands are used for examination of the alternative assignments proposed in earlier studies. Potential energy distributions (PED) and overlaps of the in-plane normal modes with frequencies below indicate that the correspondence of the respective vibrations of the deuterated and non-deuterated molecule is very good. A blue-shift of the 00 transition due to the isotopic substitution, is equal to . This relatively large value is caused primarily by a significant decrease of the N-H stretching frequency associated with the increase of strength of the intramolecular hydrogen bond upon the electronic excitation. The deuteration shift of the 00 band was interpreted in terms of the differences of the zero point energy (ZPE) between the S0 and S1 electronic states, computed with DFT and TD-DFT methods, respectively.  相似文献   

2.
For the compounds FeGa2S4 and NiGa2S4 band structure calculations have been performed by the ab initio plane wave pseudo-potential method. The valence charge density distribution points to an ionic type of chemical bonding between the transition metal atoms and the ligand atoms. Two models for the pseudo-potentials are used to calculate the band structures: (a) only s and p electrons and (b) also the d-shells of the transition metal atoms are included in the pseudo-potentials. The differences between these two cases of band structures are discussed. Energy gap formation peculiarities are analysed for both crystals. Zak's elementary energy band concept is demonstrated for the energy spectra of the considered crystals.  相似文献   

3.
用熔融淬冷法制备了掺Er3+的80GeS2-10In2S3-10CsI(mol%)硫卤玻璃样品,测试了样品的热学稳定性、喇曼光谱、吸收光谱以及上转换光谱,分析了Er3+离子在该玻璃中的上转换发光机理.应用Judd-Ofelt理论计算分析了Er3+离子在该样品中的强度参量Ωt(t=2,4,6)、自发辐射跃迁几率A、荧光分支比β以及辐射寿命τrad等光谱参量.在980 nm LD泵浦激发下,首次在该种玻璃中观察到强烈的绿光(526 nm、549 nm),分别对应于2H11/2→4I15/2和4S3/2→4I15/2的跃迁,其中549 nm处绿光较强.549 nm处上转换荧光寿命为0.34 ms,量子效率为69%.同时研究了绿光(526 nm、549 nm)上转换发光强度随泵浦激发功率的变化,其发光曲线拟合斜率分别为1.71和2.03,表明绿光是双光子吸收过程.研究结果表明:掺Er3+的80GeS2-10In2S3-10CsI硫卤玻璃是一种上转换绿光激光器的潜在基质材料.  相似文献   

4.
An anharmonic band shift in the vibrational spectra of carboxylic-acid dimers is estimated on the basis of ab initio quantum calculations of anharmonic force constants. The implementation of ab initio quantum calculations taking into account the anharmonic nature of vibrations is connected with the choice of the atomic basis in the framework of a specific quantum method. All these factors together with the exclusion principle for bands in the infrared and Raman scattering spectra allow identification of the position of the bands of valence vibrations of CH bonds in the range of 2500–3500 cm–1. The results of model calculations give reason to assert that the fundamental vibrations of the carboxylic fragment are the characteristic frequency and vibrational mode and, for OH bonds, also the characteristic intensity. Small doublet splitting and the exclusion principle for frequencies allow identification of the valence vibrations of CH bonds.  相似文献   

5.
The T1←S0 absorption spectrum of 4H-pyran-4-thione (PT) was measured in a static cell at room temperature (550-620 nm) and in a seeded cold supersonic jet (580-600 nm) using the cavity ring-down (CRD) method. In the static cell absolute extinction coefficients were determined between 573 and 610 nm with an accuracy of ∼±5%. In this region 22 harmonic sequences and 18 hot bands were observed. The energetically lowest ground state vibration at 167.5 cm−1 was identified as the promoting mode in the static PT gas. The mode in the triplet state was found at 152.3 cm−1. The CRD absorption spectra of static PT gas and jet-cooled PT are compared with the phosphorescence excitation spectrum of isolated PT. The weak S1, 0←S0, 0 absorption was tentatively assigned to a transition at ∼17433 cm−1.  相似文献   

6.
Jet-cooled fluorescence excitation and dispersed fluorescence spectra of 9-methylanthracene (MA), 9-cyanoanthracene (CA) and 9-cyano-10-methylanthracene (CMA) have been measured. The spectra of MA and CMA near the S0-S1 origin reveal a prominent torsional progression due to the hindered methyl group rotation and its torsional vibration against the aromatic ring frame. Additionally, the laser induced fluorescence LIF excitation spectrum of CMA shows the splitting of many vibrational modes.Observed positions and relative intensities of the methyl internal rotational bands were interpreted in terms of transitions calculated based on the quantum mechanical one-dimensional rotor. The low-frequency vibrational bands were interpreted also with the all electron quantum mechanical calculations within the RHF/6-31G(d,p), CIS/3-21G and CIS/6-31G(d,p) approximations. It is predicted that in the case of MA the eclipsed geometry (one C-H in the plane of the ring) is most stable in both S0 and S1 states. Conformation of the methyl group in CMA is suggested to change upon S1 ← S0 excitation (π/12 phase shift of the methyl group). The predicted energy barrier for methyl group rotation in the S0 state of CMA is considerably higher (72 cm−1) than that in the S1 state (22 cm−1). Following the present quantum mechanical calculations, the carbon atom of the methyl group belongs to the aromatic plane in the S0 ground state but it deviates from this plane in the S1 excited state. These in turn suggest that the calculated barrier for methyl group rotation in CMA has a 6-fold symmetry in the S0 ground state and roughly a 4-fold symmetry in the S1 state.  相似文献   

7.
The optimized configurations, electronic structures, charge transfers, band gaps, total energies, cohesive energies, electron density maps, infrared absorption spectra, Raman spectra, and relevant modes of natural acoustic vibrations for the semiconductor clusters C24, B12N12, Si12C12, Zn12O12, and Ga12N12 are calculated using the ab initio Hartree-Fock method in the 6–31G basis set. Original Russian Text ? V.V. Pokropivny, L.I. Ovsyannikova, 2007, published in Fizika Tverdogo Tela, 2007, Vol. 49, No. 3, pp. 535–542.  相似文献   

8.
We demonstrate for the first time that excitation of silver containing rare gas matrices at 406.74 nm results in resonance Raman spectra which show low energy localized and resonant modes. As they combine with the Ag2 stretching vibration and its overtones, they can unambiguously be attributed to the Ag2 molecule. In Xe-matrices the coupling of lattice phonons and impurity vibrations is documented by side bands which resemble the phonon density of states of the host lattice. Two trapping sites are observed in Kr-matrices.  相似文献   

9.
A rotationally resolved ultrahigh-resolution fluorescence excitation spectrum of the S1 ← S0 transition of perylene has been observed using a collimated supersonic jet technique in conjunction with a single-mode UV laser. We assigned 1568 rotational lines of the band, and accurately determined the rotational constants. The obtained value of inertial defect was positive, accordingly, the perylene molecule is considered to be planar with D2h symmetry. We determined the geometrical structure in the S0 state by ab initio theoretical calculation at the RHF/6-311+G(d,p) level, which yielded rotational constant values approximately identical to those obtained experimentally. Zeeman broadening of each rotational line with the external magnetic field was negligibly small, and the mixing with the triplet state was shown to be very small. This evidence indicates that intersystem crossing (ISC) in the S11B2u state is very slow. The rate of internal conversion (IC) is also inferred to be small because the fluorescence quantum yield is high. The rotational constants of the S11B2u state were very similar to those of the S01Ag state. The slow internal conversion (IC) at the S1 zero-vibrational level is attributed to a small structural change upon electronic transition.  相似文献   

10.
Electronic structure of the ternary GdNi4Si compound, crystallizing in hexagonal CaCu5 structure (P6/mmm space group) was studied by magnetic measurements, X-ray photoelectron spectroscopy (XPS) and ab initio calculations. Core levels and valence band were investigated. The valence band of the XPS spectra is determined mainly by the Ni(3d) and Gd(4f) bands. The peaks’ positions are in good agreement with binding energies of a metallic gadolinium and nickel. The experimental valence band spectrum as well as the calculated density of states exhibit the domination of the Ni(3d) states in region from −4 eV to the Fermi level.  相似文献   

11.
Laser induced fluorescence (LIF), single vibronic level dispersed fluorescence (DFL) spectra, and high resolution rotationally resolved scans of the S0–S1 transition of the C10H8 isomer 1-phenyl-1-butyn-3-ene have been recorded under jet-cooled conditions. The S0–S1 origin of PAV at 34 922 cm−1 is very weak. A vibronic band located 464.0 above the origin, assigned as 3010, dominates the LIF excitation spectrum, with intensity arising from vibronic coupling with the S2 state. High resolution scans of the S0–S1 origin and 3010 vibronic bands determine that the former is a 65:35 a:b hybrid band, while 3010 is a pure a-type band, confirming the role for vibronic coupling and identifying the coupled state as the S2 state. DFL spectra of all vibronic bands in the first 800 cm−1 of the spectrum were recorded. A near-complete assignment of the vibronic structure in both S0 and S1 states is obtained. Herzberg–Teller vibronic coupling is carried by two vibrations, ν28 and ν30, involving in-plane deformations of the vinylacetylene side chain, leading to Duschinsky mixing evident in the intensities of transitions in excitation and DFL spectra. Extensive Duschinsky mixing is also present among the lowest five out-of-plane vibrational modes, involving motion of the side chain. Comparison with the results of DFT B3LYP and TDDFT calculations with a 6-311+G(d,p) basis set confirm and strengthen the assignments.  相似文献   

12.
The infrared spectrum of cyanoacetylene (also called propynenitrile) has been investigated from 400 to 4000 cm−1 at a resolution of 0.5 cm−1. Integrated intensities of the main bands and a number of weaker bands have been obtained with an uncertainty better than 5%. Inaccurate values in previous studies have been identified in particular concerning the intensity of the strong ν5 stretching band at 663.2 cm−1. Former results on the temperature dependence of integrated intensities have also been revisited.Synthetic spectra calculation has been performed for the ν5 and ν6 bands on the basis of the best available high resolution data. It has been shown that the GEISA line parameters for HC3N are not sufficient to reproduce the band intensities and some hot band features observed in our experimental spectra at room temperature. As a first step, the model spectra has been improved by including a number of missing hot subbands and by calculating accurately the hot band relative intensities. Finally, a perfect agreement between calculated and observed spectra was achieved on the basis of a global analysis of HC3N levels up to 2000 cm−1 combined with the new integrated intensity measurements. A new extensive line list for the ν5 and ν6 bending modes of HC3N has been compiled.  相似文献   

13.
The B‐band resonance Raman spectra of 2(1H)‐pyridinone (NHP) in water and acetonitrile were obtained, and their intensity patterns were found to be significantly different. To explore the underlying excited state tautomeric reaction mechanisms of NHP in water and acetonitrile, the vibrational analysis was carried out for NHP, 2(1D)‐pyridinone (NDP), NHP–(H2O)n (n = 1, 2) clusters, and NDP–(D2O)n (n = 1, 2) clusters on the basis of the FT‐Raman experiments, the B3LYP/6‐311++G(d,p) computations using PCM solvent model, and the normal mode analysis. Good agreements between experimental and theoretically predicted frequencies and intensities in different surrounding environments enabled reliable assignments of Raman bands in both the FT‐Raman and the resonance Raman spectra. The results indicated that most of the B‐band resonance Raman spectra in H2O was assignable to the fundamental, overtones, and combination bands of about ten vibration modes of ring‐type NHP–(H2O)2 cluster, while most of the B‐band resonance Raman spectra in CH3CN was assigned to the fundamental, overtones, and combination bands of about eight vibration modes of linear‐type NHP–CH3CN. The solvent effect of the excited state enol‐keto tautomeric reaction mechanisms was explored on the basis of the significant difference in the short‐time structural dynamics of NHP in H2O and CH3CN. The inter‐molecular and intra‐molecular ESPT reaction mechanisms were proposed respectively to explain the Franck–Condon region structural dynamics of NHP in H2O and CH3CN.Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Rotationally resolved ultrahigh-resolution fluorescence excitation spectra of the S1 ← S0 transition of dibenzofuran have been observed using the technique of crossing a collimated molecular beam and the single-mode UV laser beam. 3291 rotational lines of the band and 3047 rotational lines of the band have been assigned. The band has been found to be a b-type transition, in which the transition moment is along the twofold symmetry axis of this molecule, and only the ΔKa = ± 1 transitions were observed. The excited state is identified to be the S11A1(ππ) state. In contrast with this, the band has been found to be an a-type transition in which the transition moment is along the long axis in plane. It indicates that the intensity of this vibronic band arises from vibronic coupling with the S21B2(ππ) state. We determined the accurate rotational constants and the molecule have been shown to be planar both in the ground and excited states.  相似文献   

15.
The photophysics of 3‐methyl‐3‐pentene‐2‐one (3M3P2O) after excitation to the S2(ππ*) electronic state were studied using the resonance Raman spectroscopy and complete active space self‐consistent field (CASSCF) method calculations. The A‐band resonance Raman spectra were obtained in cyclohexane, acetonitrile, and methanol with excitation wavelengths in resonance with the first intense absorption band to probe the structural dynamics of 3M3P2O. The B3LYP‐TD/6‐31++G(d, p) computation was carried out to determine the relative A‐band resonance Raman intensities of the fundamental modes, and the result was used to reproduce the corresponding fundamental band intensities of the 223.1 nm resonance Raman spectrum and thus to examine whether the vibronic‐coupling existed in Franck‐Condon region or not. CASSCF calculations were carried out to determine the minimal singlet excitation energies of S1, FC, S1,min (nπ*), S2, FC, S2,min (ππ*), the transition energies of the conical intersection points Sn/Sπ, Sn/S0, and the optimized excited state geometries as well as the geometry structures of the conical intersection points. The A‐band short‐time structural dynamics and the corresponding decay dynamics of 3M3P2O were obtained by the analysis of the resonance Raman intensity pattern and CASSCF computations. It was revealed that the initial structural dynamics of 3M3P2O was towards the simultaneous C3=C4 and C2=O7 bond elongation, with the C3=C4 bond length lengthening greater at the very beginning, whereas the C2=O7 bond length changing greater at the later evolution time before reaching the CI(S2/S1) conical intersection point. The decay dynamics from S2(ππ*) to S1(nπ*) via S2(ππ*)/S1(nπ*) in singlet realm and from S1(nπ*) to T1(nπ*) via ISC[S1(nπ*)/T2(ππ*)/T1(nπ*)] in triplet realm are proposed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Photoluminescence spectra of oxygen-doped chloro- and bromosodalites and sulfur-doped chloro-, bromo- and iodosodalites were measured at temperatures between 4.2 and 300 °K. At 4.2 and 77 °K, the emission spectra of oxygen-doped sodalites consisted of a series of peaks in the wavelength range 400–700 nm, with an average energy separation of ∼ 1000 cm-1. In addition, fine structure, attributed to lattice modes, was observed in each vibrational band. At 4.2 and 77 °K, the sulfur-doped samples showed a multiband spectrum in the 500–750 nm range, with an average separation of ∼ 570 cm-1 between bands. The spectrum at 4.2 °K exhibited some asymmetry not observed at 77 °K, but no fine structure was resolved. At 300 °K weak, broad-band luminescence was observed from both oxygen- and sulfur-doped samples, with no vibrational structure evident. The results compared very favorably with those reported for oxygen- and sulfur-doped alkali halides, and by analogy the spectra were attributed to luminescence from O-2 and S-2 molecular ions.  相似文献   

17.
The excited state structural dynamics of 4‐cyanobenzaldehyde (p‐CNB) were studied by using the resonance Raman spectroscopy and the quantum mechanical calculations. The experimental A‐ and B‐band absorptions were, respectively, assigned to the major nO → π3* and π2 → π3* transitions according to the B3LYP‐TD/6‐31G(d) and CIS/6‐31G(d) computations, and the resonance Raman spectra. It was determined that the actual S22π3) state was in energy lower than S31π3), which was just opposite to the B3LYP‐TD/6‐31G(d) calculated order of the S21π3) and S32π3). The vibrational assignments were carried out for the A‐ and B‐band resonance Raman spectra. The B‐band resonance Raman intensities of p‐CNB were dominated by the C2–C3/C5–C6 symmetric stretch mode ν8, the overtones nν8 and their combination bands with the ring C–H bend mode ν17, the C9–N10 stretch mode ν6, the C7–O8 stretch mode ν7 and the remaining modes. The conical intersection between S1(nOπ3) and S22π3) states of p‐CNB was determined at complete active space self‐consistent field (CASSCF)(8,7)/6‐311G(d,p) level of theory. The B‐band short‐time structural dynamics and the corresponding decay dynamics of p‐CNB were obtained by analysis of the resonance Raman intensity pattern and CASSCF computations. The resonance Raman spectra indicated that CI[S1(nOπ3)/S21π2π3π4)] located nearby the Franck–Condon region. The excited state decay dynamics evolving from the S2, FC2π3) to the S1(nOπ3) state was proposed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
M. Alatalo  A. Puisto 《Surface science》2006,600(8):1574-1578
We have studied the adsorption of O2 on the Cu(1 0 0) surface using both static potential energy surface (PES) calculations and ab initio molecular dynamics. The dynamical calculations complement the PES results, revealing steering effects which could not be predicted based on the static calculations only. We study the effect of oxidation and Ag doping on O2 adsorption dynamics. The results are discussed in the light of recent molecular beam experiments.  相似文献   

19.
We present here new high-resolution experimental data on the linestrengths and pressure-broadened Lorentzian widths for the P2(13) to R2(12) vibration-rotation lines in the first overtone absorption band of hydrogen iodide. By combining the measured linestrengths with our previous results for the fundamental band [J. Mol. Spectrosc. 218 (2003) 75] and with other published data for the higher-overtone bands of this molecule, an improved dipole moment expansion as a function of the dimensionless reduced nuclear displacement x is obtained: μ(x)=0.4471(5)−0.0772(2)x+0.542(3)x2−1.90(2)x3. This experimental dipole moment function is compared with the results of a few recent non-relativistic and relativistic ab initio calculations. The agreement between theoretical and experimental Herman-Wallis coefficients for the first two vibrational bands of HI is found best as ever reported before.  相似文献   

20.
We report the experimental Raman spectra of the ν2 band of H2O, D2O, and HDO in the vapor phase at room temperature. A complete interpretation of the Raman intensities is carried out employing the variational rovibrational wavefunctions obtained from a Hamiltonian in Radau coordinates and an ab initio polarizability surface at 514.5 nm. We show the importance of the rotation-vibration coupling to obtain the correct line intensities. Several tables with the assignments of the individual rotational-vibrational transitions and their Raman scattering strengths are reported. From these tables, the ν2 Raman spectra can be simulated up to 2000 K for H2O, and up to 300 K for D2O and HDO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号