首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Li replacement including the Li2O replaced by other oxides and the expensive Li2CO3 replaced by low-cost spodumene mineral was studied to lower the product cost of (Li2O-Al2O3-SiO2, LAS) glass ceramic, and the effects of Li replacement on the nucleation, crystallization and microstructure of LAS glass were investigated by the differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that Li2O replacement increases the crystallization activation energy, lowers the crystal growth, and increases the nucleation and crystallization temperature by restraining the formation of crystalline phases. The Li2CO3 replacement decreases the crystallization activation energy, promotes the crystal growth, without affecting the nucleation, and lowers the crystallization temperature by adding some beneficial compositions with mixed alkali effect.  相似文献   

2.
Glasses were prepared by the melt-quenching method in the ternary system Pb(PO3)2-WO3-PbF2 and doped with Er3+ in order to prepare luminescent transparent glass-ceramics. This work focused on thermal and structural characterization of tungsten lead-phosphate glasses and crystallization study for preparing transparent glass-ceramics. Thermal properties such as thermal stability and crystallization behavior upon heating were investigated by DSC in function of PbF2 content. For low PbF2 concentrations, only one crystallization peak due to Pb3(PO4)2 is observed whereas samples containing more than 15% of PbF2 present another exothermic event at lower temperatures related with precipitation of PbF2, Pb2P2O7 and Pb2OF2. Structural investigations by Raman spectroscopy suggest that PbF2 modifies the tungsten-phosphate network through the formation of P―F and P―O―Pb bonds but the average network connectivity remains almost constant. A crystallization study has been performed by DSC to investigate the dominant crystallization mechanisms in these glasses and it has been established that Pb3(PO4)2 is nucleated on the surface whereas PbF2, Pb2P2O7 and Pb2OF2 crystallize dominantly from the glassy bulk. Transparent glass-ceramics containing nanosized PbF2 crystallites were also prepared by suitable heat-treatment on the glass sample containing 20% of PbF2 and Raman microscopy of these glass-ceramics supports the crystallization mechanisms determined by DSC.  相似文献   

3.
The upconversion properties of Er3+ ions were studied for heavy metal oxyfluoride tellurite glass hosts xPbF2-(100−x)TeO2 under 975 nm excitation. The intense green (529 and 545 nm) and relative weak red (657 nm) emissions corresponding to the transitions 4S3/2 → 4I15/2, 2H11/2 → 4I15/2 and 4F9/2 → 4I15/2, respectively, were simultaneously observed at room temperature. The PbF2 content has an important influence on upconversion luminescence emission. With increasing PbF2 content, the intensities of green (529 nm) and red (657 nm) emissions increase slightly, while the green (545 nm) emission increases significantly. These results indicate that PbF2 has more influence on the green (545 nm) emission than the green (529 nm) and red (657 nm) emissions. The intense green emission observed suggest that Er3+-doped heavy metal oxyfluoride tellurite glasses can become candidates for developing upconversion optical devices.  相似文献   

4.
The structural behavior of nickel oxide in glassy and glass-ceramic materials, obtained in the system of Na2O-CaO-MgO-Fe2O3-Al2O3-SiO2, was investigated. The influence of the NiO content on the vitrification, crystallization, structure and exploitation properties of two model compositions, with different ratios [CaO]/[MgO] was analyzed. On the basis of DSC and XRD data, it is shown that NiO promoted the formation of bunsenite crystals, as nuclei for crystallization. On the other hand, NiO promoted formation of pyroxenes even for compositions with low MgO contents, which formed gehlenite without NiO admixtures. It is shown that in the composition with relatively high MgO contents, NiO could participate in the formation of two types of pyroxenes with the structure and chemical composition similar to (MgO0.4NiO0.6)(CaO0.9NiO0.1)Si2O6 and diopside-hedenbergite solid solutions. The optimal contents of NiO in both model compositions was about of 7 wt%, since higher contents reduced the exploitation properties. The glass-ceramics with optimal contents of NiO were also produced using Ni bearing galvanic slurry and coal ash; the resulting materials showed similar exploitation properties to those mentioned above.  相似文献   

5.
The vitrification and crystallization behavior of melts produced at 1400 °C in the ternary system of K2O-B2O3-TiO2 is investigated. It is shown that there are two fields of compositions (indicated in mol%) which allow obtaining the glass-ceramic materials with continuous glassy matrix after the cooling of molten compositions. In the first field [TiO2] = 25-57, [K2O] = 30-50 and [B2O3] = 0-25, the glass-ceramics consisted of the potassium-titanium-borate glassy phase and different crystalline potassium titanates (K4Ti3O8, K2Ti2O5, K2Ti4O9, K2Ti6O13). The ratio of TiO2:K2O in the obtained titanates increases with [TiO2] and [B2O3]. In the second field, [TiO2] = 7-37, [K2O] = 0-25 and [B2O3] = 52-93, the obtained glass-ceramics consisted of a similar vitreous phase, as mentioned above, and TiO2 crystals. During the cooling of the melts, short whiskers-like crystals of anatase formed in the compositions with relatively low [TiO2] and relatively high [K2O], whereas long fiber-shaped crystals of rutile appeared with the compositions characterized with relatively high [TiO2] and relatively low [K2O]. The possible application of the obtained glass-ceramic materials as a source of fibrous TiO2, for composite reinforcement, and as solid lubricants is discussed.  相似文献   

6.
Crystallization processes of Li2O-Ga2O3-SiO2-NiO system glasses have been studied by X-ray diffraction, differential calorimetry and optical absorption. Transparent glass-ceramic containing LiGa5O8:Ni2+ as the sole crystalline phase has been obtained from glass with the composition of 13Li2O-23Ga2O3-64SiO2-0.1NiO (in mol%) by the heat treatment in the temperature range from 923 to 953 K. It was revealed that the specific surface area of samples enhances crystallization of LiGaSi2O6 but obstructed that of LiGa5O8. LiGa5O8 grew to nano-sized crystallites dispersed in the glass matrices and did not affect the transparency seriously. In contrast, LiGaSi2O6 grew to crystallites with diameters more than 100 nm on the surface and made the glasses opaque. Optical absorption measurements revealed that doped Ni2+ occupied five-folded trigonal bipyramidal sites in the as-quenched glass matrices but six-folded octahedral sites of precipitated LiGa5O8 in the glass-ceramics. It was confirmed that transparent glass-ceramic containing Ni2+:LiGa5O8 was effectively obtained by the heat treatment at a temperature of 953 K for 10 h.  相似文献   

7.
Erbium-doped glasses with composition xGeO2-(80 − x)TeO2-10ZnO-10BaO were prepared by melt-quenching technique. The phonon sideband spectra and the optical absorption band edges for the host matrix were confirmed by means of the spectral measurements. Standard Judd-Ofelt calculations have been completed to these glasses. The dependence of up-conversion and infrared emission under 980 nm excitation on the glass composition was studied. The quantum efficiencies for the 4I13/2 → 4I15/2 transition of trivalent erbium in the glasses were estimated.  相似文献   

8.
CoFe2O4/BaTiO3 bilayer films were epitaxially deposited on SrTiO3 substrates by laser molecular beam epitaxy (LMBE). The growth process of the bilayer films was in-situ monitored by reflection high-energy electron diffraction (RHEED). Sixty nanometer thick-BTO layer was firstly fabricated in a layer-by-layer growth mode with an atomic smooth surface. CFO films with a varying thickness ranging from 5 to 60 nm were subsequently deposited on BTO-coated STO substrates. The different growth behaviors of CFO films were observed due to the lattice mismatch strain. Between two short stages of the growth mode transforming, a long duration with Stransky and Krastonov growth mode was maintained. Strainfully relaxed CFO film in the island growth mode was finally formed. High-resolution X-ray diffraction (HRXRD) was used to further analyze the strain effect. It was found that the tensile stress imposed on BTO by CFO was strengthened with increasing the thickness of CFO films, which could lessen the distortion of BTO by counteracting the compressive stress caused by STO substrates. The strengthened tensile stress weakened the ferroelectric property of BTO films by reducing structural tetragonality, which was demonstrated by polarization-electric (P-E) measurement.  相似文献   

9.
We report the first successful floating-zone growth of high-quality CoAl2O4 single crystals with volume up to 1 cm3 free from inclusions and sub-grains. The neutron rocking curves of the CoAl2O4 crystal have the width of about 0.30 degree proving the excellent quality of the grown samples. X-ray synchrotron experiments show that crystals have spinel structure with the lattice constant a0=8.09853(1) Å. Magnetization measurements give the effective magnetic moment μeff=4.63 μB per Co+2 ion in a good agreement with previous measurements on ceramic samples.  相似文献   

10.
X.L. Duan  C.F. Song  F.P. Yu  D.R. Yuan 《Journal of Non》2008,354(29):3516-3519
Co2+-doped MgAl2O4 nanocrystalline powders were prepared by co-precipitation method. The gels and/or calcined samples were characterized by means of thermogravimetry and differential scanning calorimetry (TG/DSC), X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier transform infrared (FTIR) spectrum and near-infrared absorption spectrum. MgAl2O4 nanocrystals were produced by calcining the gel above 800 °C, with the crystallite size of 10-30 nm in the temperature range of 800-1100 °C. The influence of pH value of precipitant solution on the dispersing of powders was studied and the result showed that Co:MgAl2O4 nanocrystalline powders exhibited good dispersion when pH = 11. The absorption spectrum of Co2+-doped MgAl2O4 exhibited a broad absorption band in the wavelength range of 1200-1600 nm, which indicated that Co2+ ions substituted for the tetrahedrally coordinated Mg2+ ions in the MgAl2O4 lattice.  相似文献   

11.
Ag3CuS2 nanocages were successfully fabricated for the first time via a convenient ion-exchange route by Ag+ reacting with Cu7S4 18-facet hollow nanopolyhedra. The average size and shell thickness of Ag3CuS2 nanocages were around 400 and 30 nm, respectively. Room-temperature response of Ag3CuS2 nanocages to ammonia was investigated by photoluminescence-type sensor. Sensing results suggested that these hollow-structured Ag3CuS2 exhibited better performances including higher sensitivity, shorter response and recovery time than their rod-shape counterparts. A possible hole trapping mechanism was proposed.  相似文献   

12.
The addition of polyvalent transition metal ions to the usually insulating traditional soda-lime-silica glasses can lead to semiconducting properties. We report on synthesis of glasses and glass-ceramics in a soda-lime-silicate based system containing Fe2O3 in the concentration range from 5 to 30 mol%. Two sub-systems were considered, in one of them the ratio [Na2O]/[Fe2O3] was varied while in the other one, the ratio [SiO2]/[Fe2O3] was changed. The phase composition of the synthesized products was characterized by X-ray diffraction and energy dispersive X-ray analysis, while the electrical properties were studied by impedance spectroscopy. Partially crystallized non-reduced samples are semiconducting even at room temperature while the glassy samples (both reduced and non-reduced) exhibit semiconducting properties at temperatures equal or larger than 100 °C. An attempt is done to predict the physical approximation explaining the conduction process in the glasses.  相似文献   

13.
Four glasses of the SiO2-GeO2 binary system have been synthesized via a sol-gel route followed by a heat treatment and a quench. Glass structure has been determined by Ge K-edge X-ray absorption spectroscopy (XAS) at low temperature and Raman spectroscopy. These mixed glasses present a continuous random network of interconnected GeO4 and SiO4 tetrahedra, with GeO4 tetrahedra similar to the GeO4 units in GeO2 glass and continuous compositional variations from GeO2-rich regions to SiO2-rich regions. Such a random mixture is consistent with physical properties of these binary glasses as well as with the chemical dependence of their polyamorphism at high pressure. This EXAFS-derived mean Ge-O-Si angles are close to the Ge-O-Ge mean angle in GeO2 glass, 134° and 130°, respectively. This misfit with the Si-O-Si angles might explain the ease of formation of isolated and pair defects centers, which are suspected to be at the origin of photo-induced modifications of optical properties in Ge-bearing SiO2 glasses.  相似文献   

14.
Er2O3-doped Bi2O3-B2O3-Ga2O3 glasses were prepared by the conventional melt-quenching method, and the Er3+:4I13/2 → 4I15/2 fluorescence properties are studied for different Er3+ concentrations. when the Er2O3 concentration increases from 0.03 to 3.0 mol%, the measured lifetime of Er3+:4I13/2 level decrease from 2.24 to 0.9 m s, and from 0.25 to 0.20 m s for the Er3+:4I11/2 level. The fast energy migration among Er3+ ions cause the reduction of lifetime of the 4I13/2 level, whereas the change in the 4I11/2 level is mainly due to a cooperative upconversion process (4I11/24I11/2) → (4F7/24I15/2). Based on the dipole-dipole interaction theory, the interaction parameter, CEr,Er, for the migration rate of Er3+:4I13/2 ↔ 4I13/2 was calculated to be 32 × 10−40 cm6 s−1.  相似文献   

15.
The crystal growth kinetics of antimony trisulfide in (GeS2)0.1(Sb2S3)0.9 glass has been studied by microscopy and DSC. The linear crystal growth kinetics has been confirmed in the temperature range 492 ? T ? 515 K (EG = 405 ± 7 kJ mol−1). The applicability of standard growth models has been assessed. From the crystal growth rate corrected for viscosity plotted as a function of undercooling it has been found that the most probable mechanism is interface controlled 2D nucleated growth. The non-isothermal DSC data, corresponding to the bulk sample, can be described by the Johnson-Mehl-Avrami equation.  相似文献   

16.
Assuming thermal balance and solute conservation, a numerical model has been proposed to describe the recalescence behavior of bulk-undercooled Cu–Ni melts. Applying a finite-difference scheme, the transformed solid fraction upon recalescence is given as a function of the liquid temperature, while the average liquid concentration can be tracked by calculation of the liquid/solid (L/S) Gibbs energy difference, in combination with a dendrite growth model. Accordingly, a transition from non-equilibrium to equilibrium process has been described from the evolution of L/S Gibbs energy difference. Applying the present model, the experimentally observed maximum recalescence temperature can be well predicted.  相似文献   

17.
Hongwu Zhang  Xiaoyan Fu  Qin Xin 《Journal of Non》2008,354(14):1559-1563
In this paper, thulium doped ZrO2 nanocrystals with different phases were prepared by Pechini sol-gel complex method. The effects of host structure, phases and concentration on luminescence properties of Tm3+ ions were investigated. With the increase of the concentration of Tm3+ ions, the phosphors phase transformed from monoclinic to tetragonal structure and all the phosphors emitted blue light. However, because the environment symmetry around Tm3+ in m-ZrO2 (C2h) is worse than that of t-ZrO2 (D4h), there were still obvious differences in the emission and excitation. The reason was investigated with the help of energy level diagram. In addition, the quenching concentration of Tm3+ in ZrO2 host is 1 m/m%.  相似文献   

18.
The glasses with the compositions of 21.25RE2O3-63.75MoO3-15B2O3 (RE: Sm, Gd, Dy) were prepared and the formation of β′-RE2(MoO4)3 ferroelectrics was confirmed in the crystallized glasses obtained through a conventional crystallization in an electric furnace. The features of the glass structure and crystallization behavior were clarified from measurements of Raman scattering spectra. Continuous-wave Nd:YAG laser with a wavelength of 1064 nm (laser power: 0.6-0.9 W, laser scanning speed: S = 1-16 μm/s) was irradiated to 10.625Sm2O3-10.625Gd2O3 (or Dy2O3)-63.75MoO3-15B2O3 glasses, and the structural modification was induced at the glass surface. At the scanning speed of S = 10 μm/s, crystal lines consisting of β′-Gd2−xSmx(MoO4)3 or β′-Dy2−xSmx(MoO4)3 crystals were patterned on the glass surface. It was found that those crystal lines have the surface morphology with periodic bumps. At S = 1 μm/s, it was found that crystal lines consist of the mixture of paraelectric α-Gd2−xSmx(MoO4)3 and ferroelectric β′-Gd2−xSmx(MoO4)3 crystals, indicating the phase transformation from the β′ phase to the α phase during laser irradiation. Homogeneous crystal lines with β′-RE2(MoO4)3 ferroelectrics have not been written in this study, but further research is continuing.  相似文献   

19.
A novel method to synthesize GaN crystals was studied by the reaction of Ga with Li3N under NH3 atmosphere. We have already reported the synthesis technique of GaN by the reaction of Ga2O3 with Li3N. However, the size of GaN crystals obtained by this method was limited to be smaller than several micrometers because of the solid phase reaction. In order to increase the size of GaN crystals, the method using liquid Ga as gallium source was studied for solid–liquid phase reaction. We found that the GaN crystals with the size of more than 100 μm were synthesized at 750 °C for 24 h under NH3 atmosphere. We propose the possible reaction mechanism as follows. Lithium amide (LiNH2) is synthesized by the reaction of Li3N with NH3 gas and then the crystal growth of GaN occurs by the reaction of Ga with LiNH2. We found that LiNH2 is a useful nitrogen source for the GaN synthesis method.  相似文献   

20.
Nobuaki Terakado 《Journal of Non》2008,354(18):1992-1999
Oxy-chalcogenide glasses with compositions of xGeO2-(100 − x)GeS2, where 0 ? x ? 100 mol%, have been prepared and studied in terms of their structures and optical properties. X-ray fluorescence spectroscopy shows that Ge:S ratio can deviate from GeS2 by ∼10 at.%, depending critically upon the preparation conditions. Raman scattering spectroscopy suggests that stoichiometric GeO2-GeS2 glasses have a heterogeneous structure in the scale of 1-100 nm. The optical gaps are nearly constant at 3.0-3.5 eV for glasses with 0 ? x ? 80 mol% and abruptly increase to ∼6 eV in GeO2. This dependence suggests that the optical gap is governed by GeS2 clusters, which are isolated and/or percolated. Composition-deviated glasses appear as orange and brown, and these glasses seem to have more inhomogeneous structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号