首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
G. Li  Y.C. Li  T. Xu  J. Liu  R.P. Liu 《Journal of Non》2009,355(9):521-524
The existence of special covalently bonded short-range ordering structures in a Mg65Cu25Tb10 bulk metallic glass (BMG) is confirmed by thermal expansion and compression behavior. Under ambient conditions the linear thermal expansion coefficient obtained is almost constant in the glassy state with a value of 4.0 × 10−5 K−1. By fitting the static equation of state at room temperature under ambient conditions we find the value for bulk modulus B of 48.7 GPa, which is in excellent agreement with the experimental study by pulse-echo techniques of 44.7 GPa. Unlike many bulk metallic glasses, such as Zr- and Pd-based, which bulk modulus is much larger than 100 GPa, the value B of Mg65Cu25Tb10 BMG falls into the range of SiO2 and fluorozirconate glass ZBLAN. Moreover, the elastic constant of the Mg65Cu25Tb10 BMG is almost the same as those of ZBLAN. No evidence for the high-pressure phase transitions of the Mg65Cu25Tb10 BMG has been found up to 31.19 GPa at room temperature.  相似文献   

2.
R. Kirkpatrick 《Journal of Non》2007,353(27):2624-2637
While a coating may alter the surface properties and the performance of a material, it is unclear if these thin barrier layers can effectively inhibit environmentally-assisted cracking processes. In this research a nanoscale, hydrophobic film of octadecyltrichlorosilane was applied to bulk borosilicate glass rods. The resistance of the coated and uncoated rods to environmentally-assisted cracking was then evaluated in a room temperature, deionized water environment. While the coating procedure did not damage the glass surface or affect the probability of completing a successful test, it did not provide protection the glass samples against environmentally-assisted cracking. Analytical models based on linear elastic fracture mechanics suggest that the coating thickness must be on the order of the crack mouth opening displacement for the barrier layer to be effective. This finding suggests that nanoscale barrier coatings are best suited for micron and nanometer-scale substrates when superior structural performance is required.  相似文献   

3.
4.
Samples of polystyrene films were irradiated under vacuum at room temperature with 58Ni7+ (86 MeV) ion with fluences ranging from 1 × 1011 to 1 × 1013 ions cm−2. Ion induced structural modifications were studied by means of atomic force microscopy atomic force microscopy (AFM), X-ray diffraction (XRD), UV-visible absorption spectroscopy (UV-Vis) and Fourier transform infrared spectroscopy (FTIR) techniques. Atomic force microscopy shows that the root mean square (RMS) roughness of the irradiated polystyrene surface increases with the increment of ion fluence. XRD analysis reveals that in addition to the increase of amorphization of polymer with the increase of ion fluence there is also an increase of ordering (to a small extent) in some of the micro-domains. These results have further been supported by the study of optical and chemical analysis. The analysis of present study shows that the increase of full width at half maximum (FWHM) of first peak of XRD spectra, decrease of optical band gap and the formation of new alkyne group may be attributed to the increase of amorphization of polystyrene. Similarly, sharpening of second X-ray diffraction peak, decrease of Urbach’s energy and increase in the absorbance ratio of I1222/I1183 may be owed to the increase of ordering in some domains.  相似文献   

5.
The structure and elastic properties of a series of xNa2O · MgO · 4SiO2 glasses have been studied using both Raman and Brillouin spectroscopy. Relative to Na2O-SiO2 glasses, the maximum abundance for phyllosilicate structural units in the present glasses shows a lag of 0.5 units in the number of non-bridging oxygen per silicon atom (NBO/Si). This phenomenon has been attributed to the decrease in the average coordination number of modifying cations due to the presence of Mg2+. It has also been found that the decomposition of both metasilicate and disilicate (dimerized SiO4) anionic structural units in Na2O-SiO2 glasses are enhanced by the addition of MgO. However, the presence of Mg2+ does not cause a considerable effect on the decomposition of phyllosilicate structural unit. The acoustic data have revealed that both shear and Young’s moduli of the present glasses decrease with increasing NBO/Si (the variation in bulk modulus is reversed, however). The resistance to shear deformation for the anionic structural units in silicate glasses has been found to decrease in the following order: tectosilicate > phyllosilicate > metasilicate > disilicate > orthosilicate. The relative contribution of the various anionic structural units to the bulk modulus of a glass remains to be determined. The ideal mixing model using Makishima-Mackenzie’s relationship for predicting Young’s modulus is not applicable to the present glasses.  相似文献   

6.
The thermal properties and electrical-switching behavior of semiconducting chalcogenide SbxSe55−xTe45 (2 ? x ? 9) glasses have been investigated by alternating differential scanning calorimetry and electrical-switching experiments, respectively. The addition of Sb is found to enhance the glass forming tendency and stability as revealed by the decrease in non-reversing enthalpy ΔHnr, and an increase in the glass-transition width ΔTg. Further, the glass-transition temperature of SbxSe55−xTe45 glasses, which is a measure of network connectivity, exhibits a subtle increase, suggesting a meager network growth with the addition of Sb. The crystallization temperature is also observed to increase with Sb content. The SbxSe55−xTe45 glasses (2 ? x ? 9) are found to exhibit memory type of electrical switching, which can be attributed to the polymeric nature of network and high devitrifying ability. The metallicity factor has been found to dominate over the network connectivity and rigidity in the compositional dependence of switching voltage, which shows a profound decrease with the addition of Sb.  相似文献   

7.
The presence of sulfur in radioactive waste to be incorporated in borosilicate glasses entails difficulties mainly due to the relatively low solubility of sulfates in the vitreous phase. In this work a study is presented on the effects of the ratio R = [Na2O]/[B2O3], the type of sulfate added and the addition of V2O5 on the incorporation of sulfates in borosilicate glasses. Glass samples were prepared at the laboratory scale (up to 50-100 g) by melting oxide and sulfate powders under air in Pt/Au crucibles. XRF and ICP/AES chemical analysis, SEM/EDS, microprobe WDS and Raman spectroscopy were employed to characterize the fabricated samples. The main experimental results confirm that the incorporation of sulfates in borosilicate glasses is favored by the network depolymerization, which evolves with the ratio R. The addition of V2O5 seems to accelerate the kinetics of sulfur incorporation in the glass and, probably, increase the sulfate solubility by modifying the borate network and fostering the formation of voids of shape and size compatible with the sulfur coordination polyhedron in the glassy network. The kinetics of X2SO4 incorporation in the glass seems to be slower when X = Cs.  相似文献   

8.
S. Basu  H. Jain 《Journal of Non》2008,354(28):3278-3283
We have explored the development of multifunctionalities viz, optical nonlinearity, high dielectric constant and ferromagnetic behavior in a nanostructured silica based glass of 14.0Na2O, 26.0BaO, 26.0TiO2, 16.0B2O3, 17.0SiO2, 1.0NiO (mol%) composition. A heat treatment at 863 K for 4 h led to nonlinear refractive index and absorption coefficients at wavelength 800 nm of 0.11 × 10−19 m2/W and 1.15 × 10−3 cm/GW, respectively. A heat treatment at 1073 K for 2 h followed by 1113 K for 3 h increased the dielectric constant from 11 to 50, apparently due to the formation of nanocrystals of BaTiO3 within the glass medium. Glass samples reduced at 923 K for 1 h exhibited ferromagnetic behavior due to the presence of nickel nanoparticles.  相似文献   

9.
Phosphate glasses in the system P2O5-CaO-MgO-Na2O-TiO2 for use as degradable implant materials were produced. In order to classify their solubility behavior, dissolution experiments were performed in deionized water for 60 min at 98 °C. Resulting solutions were analyzed using ICP-OES. In addition, pH measurements were carried out in physiological NaCl solution. With increasing phosphorus oxide content, the glasses showed a higher solubility and gave lower pH values in aqueous solution. This was caused by changes in the glass structure, as long phosphate chains are more susceptible to hydration than smaller phosphate groups. These changes in glass structure were followed by 31P MAS-NMR experiments. Increasing sodium oxide concentrations in exchange for calcium or magnesium oxide also increased the glass solubility by disrupting ionic cross links between chains. By contrast, addition of titania made the glasses more stable towards dissolution by cross linking smaller phosphate groups. The aim of this study was to find a relationship between glass composition and solubility behavior. As classical linear methods of data analysis were unsuitable due to the complexity of the relationship, preliminary artificial neural networks analyses were performed and were found to be an interesting tool for modeling the solubility behavior of phosphate glasses.  相似文献   

10.
Metallic glass microstructures with high aspect ratios for micro-electro-mechanical system applications have been fabricated by micro-electro-discharge machining and selective electrochemical dissolution methods. Micro-holes and three-dimensional microstructures machined on the La62Al14Ni12Cu12, Zr55Al10Ni5Cu30 and Cu46Zr44Al7Y3 bulk metallic glasses by micro-electro-discharge machining are evaluated by using X-ray diffraction, scanning electron microscopy, and nanoindentation. The experimental results demonstrate that the machined samples kept their amorphous structure without devitrification, and their machining characteristics are related to the thermo-physical properties of the alloys and the electrode diameters. Porous, single-pore and thin-walled Zr-based metallic glass tubes with micro-pore structures can be prepared by selective electrochemical dissolution method. The high aspect ratio microstructures fabricated by the two methods have the potential applications as micro-nozzles, polymer micro-injection molding tools, micro-channels or micro-flow meters in micro-electro-mechanical system devices.  相似文献   

11.
Population dynamics of the 3F4 and 3H4 levels in Tm3+ doped ZB(L)AN glasses was studied for Tm3+ concentrations from 0.5 to 12 mol%. Fluorescence waveforms from these levels were measured at 1.8 μm (3F4) and 800 nm (3H4) with both direct and indirect pumping. Decay from the 3F4 level was found to be exponential with non-radiative decay rates proportional to the square of the Tm concentration. This indicated a process of energy migration by diffusion within the excited Tm3+ ions followed by quenching at sites to which the ions could migrate. The decay of the directly pumped 3H4 level exhibited both exponential and non-exponential behavior depending on the concentration. For the lowest concentration (0.5 mol%) the decay was exponential, but at concentrations of 1, 2, 4 and 6 mol% the decay waveforms were distinctly non-exponential. The non-exponential waveforms could be fitted by the Yokota-Tanimoto model for diffusion of excited donors and dipole-dipole interactions with acceptors. This model produced values for CDD and CDA, the donor-donor and donor-acceptor energy transfer parameters, respectively. At the higher concentrations (8, 10, 12 mol%) the waveforms were exponential with decay rates from which the cross-relaxation parameter for the process 3H4, 3H6 → 3F4, 3F4 was obtained. When the 3F4 level is pumped at 1660 nm, the decay of the 3H4 level confirmed the influence of the up-conversion energy transfer process 3F4, 3F4 → 3H4, 3H6.  相似文献   

12.
Vitreous (v) and molten (m) GeO2 were studied by Rayleigh and Mandel’shtam–Brillouin scattering spectroscopy and high-temperature acoustics. Original measurement apparatus and procedure were used that included Bayseian deconvolution of light scattering spectra of vGeO2 and a specially designed high-temperature (up to 1500 °C) acoustic interferometer to measure temperature and frequency dependence of ultrasonic (US) velocity and attenuation in mGeO2. Landau–Placzek ratios for vGeO2 were found optically (from the light scattering spectrum) and acoustically (through the Schroeder’s formalism). Dispersion of optical and other physical parameters of vGeO2 found by many authors is explained by the existence of small amount of GeO in the samples. It means that properties of vGeO2 are under the influence of redox synthesis conditions controlling the GeO2 ↔ GeO and coordination [GeO4] ↔ [GeO6] equilibrium in vGeO2. Measurements of temperature dependencies of longitudinal ultrasonic velocities in mGeO2 and in the PbO–GeO2 glass melts as a function of PbO concentration shows existence of ‘water-like anomaly’ in mGeO2 and in liquid germanates with the rich content of GeO2 where equilibrium sound velocity increases with the temperature.  相似文献   

13.
M. Anbarasu  S. Asokan 《Journal of Non》2008,354(28):3369-3374
Alternating differential scanning calorimetric (ADSC) studies and electrical switching experiments have been undertaken on Al15Te85−xSix (2 ? x ? 12) system of glasses. These glasses are found to exhibit two crystallization reactions (Tc1 and Tc2), for compositions with x < 8. Above x = 8, a single-stage crystallization is seen. Further, a trough is seen in the composition dependence of non-reversing enthalpy (ΔHNR), based on which it is proposed that there is a thermally reversing window in Al15Te85−xSix glasses, in the composition range 4 ? x ? 8. Electrical switching studies indicate that Al15Te85−xSix glasses exhibit a threshold type electrical switching at ON state currents less than 2 mA. Further, the switching voltages are found to increase with the increase in silicon content. It is interesting to note that the start (x = 4) and the end (x = 8) of the thermally reversing window are exemplified by a kink and a saturation in the composition dependence of switching voltages, respectively.  相似文献   

14.
The effect of the variation in phosphate (P2O5) content on the properties of two series of bioactive glasses in the quaternary system SiO2-Na2O-CaO-P2O5 was studied. The first series (I) was a simple substitution of P2O5 for SiO2 keeping the Na2O:CaO ratio fixed (1:0.87). The second series (II) was designed to ensure charge neutrality in the orthophosphate (), therefore as P2O5 was added the Na2O and CaO content was varied to provide sufficient Na+ and Ca2+ cations to charge balance the orthophosphate present. Network connectivity’s of the glasses were calculated, and densities and thermal expansion coefficients predicted using the Appen and Doweidar models, respectively. Theoretical densities were measured using the Archimedes principle. Characteristic temperatures, namely the glass transition temperature, Tg, and crystallization temperatures, Tx, were obtained using differential analysis (DTA). Two crystallization exotherms were observed for both glass series (Txi and Txii). Both Tg and Tx decreased with P2O5 addition for both series. The working range of the glasses, Tx-Tg was shown to increase to a maximum at around 4 mol% P2O5 then decrease at higher P2O5 contents for both series. Thermal expansion coefficients were measured using dilatometry increasing with P2O5 addition and showed good agreement with the Appen values. Dilatometric softening points, Ts, were also measured, which increased with P2O5 addition. X-ray diffraction (XRD) was performed on the glasses to confirm their amorphous nature. The glass containing 9.25 mol% P2O5 from series I exhibited well-defined peaks on the XRD trace, indicating the presence of a crystalline phase.  相似文献   

15.
I. Dyamant  E. Korin 《Journal of Non》2008,354(27):3135-3141
Glasses in the La2O3−CaO−B2O3 ternary system were studied. The glass forming range as determined by the appearance of the annealed cast was found to match previously published findings. Clear glasses were formed in the composition range of 5.7−19.1 mol% La2O3 with constant B2O3 content of 71.4 mol%, and in glasses of constant La2O3:CaO ratio of 1:4 with B2O3 content in the range of 71.4-55.0 mol%. The non-linear optical crystalline phase La2Ca2B10O19 was crystallized from the clear glasses after heat treatments, as determined by powder XRD. Two types of the LaBO3 crystalline phases were detected in the partially and the fully crystallized glass compositions outside the glass forming range. Data are reported for the glass transition temperature (Tg), dilatometric softening point (Td), linear coefficient of expansion (α), onset crystallization temperature (Tx), exothermal peak temperature (TP), density (ρ) and index of refraction (nD) in the clear glasses.  相似文献   

16.
Tae Hoon Lee 《Journal of Non》2008,354(27):3107-3112
The formation of structural units in Ge-Ga-S glass with CsBr addition and its effect on the optical band gap and several spectroscopic properties of Ho3+ were investigated. The optical band gap of the host glasses and the oscillator strengths of Ho3+ absorption decreased sharply when the ratio of CsBr/Ga became close to unity. These property changes were associated with the formation of structural units of [GaS3/2Br] and they have a crucial effect on the changes of the local structure around Ho3+ ions. The local structure was not sensitive to the As or Br addition but was critically dependent on the concentration of CsBr.  相似文献   

17.
Glasses based on (85 − x)TeO2-xZnF2-12PbO-3Nb2O5 (x = 0-40) system have been studied for the first time for fabricating mid-infrared optical fiber lasers. The thermal and optical properties including UV-Vis, Raman as well as FTIR spectra are reported. It is demonstrated that increasing the ZnF2 concentration to 30 mol% significantly increased the thermal stability of the glass. Adding ZnF2 also reduced the hydroxyl (OH) content of the glass resulting in lower optical absorption in the mid-infrared region, which is crucial for infrared laser applications. The glass absorption cut-off edge near 400 nm blue-shifts with increasing ZnF2 addition. Raman spectra show a depolymerization of the glass network with increasing transformation of TeO3+1 to TeO3 structures.  相似文献   

18.
The MgO (2 0 0) surface is widely used as a substrate for epitaxial growth of superconducting and ferro-electric films. Highly oriented, single crystalline, extremely flat and transparent MgO films have been successfully deposited on quartz substrates by the chemical spray pyrolysis technique using economically viable metal organic and inorganic precursors under optimized conditions at the substrate temperature of 600 °C. Thermal analysis (TGA/DTA) in the temperature range 30-600 °C with the heating rate of 10 °C/min revealed the decomposition behavior of the precursors and confirmed the suitable substrate temperature range for film processing. The heat of reaction, ΔH due to decomposition of metal organic precursor contributed additional heat energy to the substrate for better crystallization. The intensity of the (2 0 0) peak in X-ray diffraction (XRD) measurements and the smooth surface profiles revealed the dependency of precursor on film formation. The compositional purity and the metal-oxide bond formation were tested for all the films. UV-Vis-NIR optical absorption in the 200-1500 nm range revealed an optical transmittance above 80% and the absorption edge at about 238 nm corresponding to an optical band gap Eg = 5.25 eV. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) micrographs of MgO films confirmed better crystallinity with larger grain size (0.85 μm) and reduced surface roughness (26 nm), respectively.  相似文献   

19.
Bing Zhang  Li Song  Fengzhen Hou 《Journal of Non》2008,354(18):1948-1954
Glasses in the ternary system ZnO-Sb2O3-P2O5 were investigated as potential alternatives to lead based glasses for low temperature applications. The glass-forming region of ZnO-Sb2O3-P2O5 system has been determined. Structure and properties of the glasses with the composition (60 − x)ZnO-xSb2O3-40P2O5 were characterized by infrared spectra (IR), differential thermal analysis (DTA) and X-ray diffraction (XRD). The results of IR indicated the role of Sb3+ as participant in glass network structure, which was supported by the monotonic and remarkable increase of density (ρ) and molar volume (VM) with increasing Sb2O3 content. Glass transition temperature (Tg) and thermal stability decreased, and coefficient of thermal expansion (α) increased with the substitution of Sb2O3 for ZnO in the range of 0-50 mol%. XRD pattern of the heat treated glass containing 30 mol% Sb2O3 indicated that the structure of antimony-phosphate becomes dominant. The improved water durability of these glasses is consistent with the replacement of easily hydrated phosphate chains by corrosion resistant P-O-Sb bonds. The glasses containing ?30 mol% Sb2O3 possess lower Tg (<400 °C) and better water durability, which could be alternatives to lead based glasses for practical applications with further composition improvement.  相似文献   

20.
Coumarin 1 (C1) dye is impregnated in transparent sol-gel glass samples prepared by sol-gel process using three methods - (I) using HCl as catalyst and glycerol as a drying control chemical additive (DCCA), (II) using HCl as catalyst at 60 °C subsequent drying at room temperature, and (III) using HCl as catalyst at 60 °C and heated at 600 °C for 3 h. The sol-gel matrices prepared by Methods I and II are given dip treatment with methanol/distilled water (50/50 volume) for 16 h before dipping into dye solution. The effect of method and drying time of matrix on spectroscopic properties of C1 dye doped glass samples has been studied. The optical density (OD) at absorption maximum wavelength and fluorescence intensity (FI) at fluorescence maximum wavelength of all C1 dye doped samples prepared by Methods I and II decrease, where as there is no change in photophysical properties (OD/FI) is observed in samples prepared by Method III with the time of drying of the sol-gel samples. These absorption/fluorescence properties of C1 dye in sol-gel glass matrices are compared with its respective properties in methanolic solution in acidic environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号