首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M. Anbarasu  S. Asokan 《Journal of Non》2008,354(28):3369-3374
Alternating differential scanning calorimetric (ADSC) studies and electrical switching experiments have been undertaken on Al15Te85−xSix (2 ? x ? 12) system of glasses. These glasses are found to exhibit two crystallization reactions (Tc1 and Tc2), for compositions with x < 8. Above x = 8, a single-stage crystallization is seen. Further, a trough is seen in the composition dependence of non-reversing enthalpy (ΔHNR), based on which it is proposed that there is a thermally reversing window in Al15Te85−xSix glasses, in the composition range 4 ? x ? 8. Electrical switching studies indicate that Al15Te85−xSix glasses exhibit a threshold type electrical switching at ON state currents less than 2 mA. Further, the switching voltages are found to increase with the increase in silicon content. It is interesting to note that the start (x = 4) and the end (x = 8) of the thermally reversing window are exemplified by a kink and a saturation in the composition dependence of switching voltages, respectively.  相似文献   

2.
The thermal diffusivity (α) of As20Te80−xGax glasses (7.5 ? x ? 18.5) has been measured using photo-thermal deflection (PTD) technique. It is found that the thermal diffusivity is comparatively lower for As20Te80−xGax glasses, which is consistent with the memory type of electrical switching exhibited by these samples. Further, the thermal diffusivity of As20Te80−xGax glasses is found to increase with the incorporation of gallium initially (for x ? 9), which is consistent with the metallicity of the additive. This increase in α results in a maximum at the composition x = 9; beyond x = 9, a decrease is seen in α leading to a minimum at the composition x = 15. The observed composition dependence of thermal diffusivity of As20Te80−xGax glasses has been found to be similar to that of Al20AsxTe100−x glasses, based on which it is proposed that As20Te80−xGax glasses exhibit an extended stiffness transition with compositions x = 9 and x = 15 being its onset and completion, respectively. Also, the composition x = 17.5 at which a second maximum is seen in the thermal diffusivity has been identified to be the chemical threshold (CT) of the As20Te80−xGax glassy system, as at CT, the glass is configurationally closest to the crystalline state and the scattering of the diffusing thermal waves is minimal for the chemically ordered phase.  相似文献   

3.
B.J. Madhu  S. Asokan 《Journal of Non》2009,355(8):459-228
Electrical switching studies on bulk Ge10Se90−xTlx (15 ? x ? 34) glasses have been undertaken to examine the type of switching, composition and thickness dependence of switching voltages. Unlike Ge-Se-Tl thin films which exhibit memory switching, the bulk Ge10Se90−xTlx glasses are found to exhibit threshold type switching with fluctuations seen in their current-voltage (I-V) characteristics. Further, it is observed that the switching voltages (VT) of Ge10Se90−xTlx glasses decrease with the increase in the Tl concentration. An effort has been made to understand the observed composition dependence on the basis of nature of bonding of Tl atoms and a decrease in the chemical disorder with composition. In addition, the network connectivity and metallicity factors also contribute for the observed decrease in the switching voltages of Ge10Se90−xTlx glasses with Tl addition. It is also interesting to note that the composition dependence of switching voltages of Ge10Se90−xTlx glasses exhibit a small cusp around the composition x = 22, which is understood on the basis of a thermally reversing window in this system in the composition range 22 ? x ? 30. The thickness dependence of switching voltages has been found to provide an insight about the type of switching mechanism involved in these samples.  相似文献   

4.
Bulk Ge17Te83−xTlx glasses (0 ≤ x ≤ 13), have been found to exhibit memory type electrical switching. The switching voltages (also known as threshold voltage — Vth) of Ge17Te83−xTlx glasses are found to decrease with increasing thallium content. The rate of decrease of Vth is greater at lower concentrations and Vth falls at a slower rate for higher thallium concentrations (x ≥ 6).The addition of thallium to the Ge-Te network fragments the covalent network and introduces ionic nature to it; the reduction in network connectivity leads to the decrease in switching voltages with thallium content. The decrease in the glass transition temperatures of Ge17Te83−xTlx glasses with increasing thallium concentration supports the idea of decrease in network connectivity with Tl addition. The more metallic nature of Tl also contributes to the observed reduction in the switching voltages of Ge17Te83−xTlx glasses with Tl content.Further, there is an interesting correlation seen between the threshold voltage Vth and the average bond energy, as a function of Tl content. In addition, the switching voltages of Ge17Te83−xTlx glasses have been found to decrease with sample thickness almost linearly. The set-reset studies indicate that the Ge17Te81Tl2 sample can be switched for more than 10 cycles, whereas other glasses could not be reset beyond two switching cycles.  相似文献   

5.
The thermal properties and electrical-switching behavior of semiconducting chalcogenide SbxSe55−xTe45 (2 ? x ? 9) glasses have been investigated by alternating differential scanning calorimetry and electrical-switching experiments, respectively. The addition of Sb is found to enhance the glass forming tendency and stability as revealed by the decrease in non-reversing enthalpy ΔHnr, and an increase in the glass-transition width ΔTg. Further, the glass-transition temperature of SbxSe55−xTe45 glasses, which is a measure of network connectivity, exhibits a subtle increase, suggesting a meager network growth with the addition of Sb. The crystallization temperature is also observed to increase with Sb content. The SbxSe55−xTe45 glasses (2 ? x ? 9) are found to exhibit memory type of electrical switching, which can be attributed to the polymeric nature of network and high devitrifying ability. The metallicity factor has been found to dominate over the network connectivity and rigidity in the compositional dependence of switching voltage, which shows a profound decrease with the addition of Sb.  相似文献   

6.
Bulk Ge15Te85 ? xSnx and Ge17Te83 ? xSnx glasses, are found to exhibit memory type electrical switching. The switching voltages (Vt) and thermal stability of Ge15Te85 ? xSnx and Ge17Te83 ? xSnx glasses are found to decrease with Sn content. The composition dependence of Vt has been understood on the basis of the decrease in the OFF state resistance and thermal stability of these glasses with tin addition. X-ray diffraction studies reveal that no elemental Sn or Sn compounds with Te or Ge are present in thermally crystallized Ge–Te–Sn samples. This indicates that Sn atoms do not interact with the host matrix and form a phase separated network of its own, which remains in the parent glass matrix as an inclusion. Consequently, there is no enhancement of network connectivity and rigidity. The thickness dependence of switching voltages of Ge15Te85 ? xSnx and Ge17Te83 ? xSnx glasses is found to be linear, in agreement with the memory switching behavior shown by these glasses.  相似文献   

7.
Nanoindentation studies on Ge15Te85 ? xInx glasses indicate that the hardness and elastic modulus of these glasses increase with indium concentration. While a pronounced plateau is seen in the elastic modulus in the composition range 3  x  7, the hardness exhibits a change in slope at compositions x = 3 and x = 7. Also, the density exhibits a broad maximum in this composition range. The observed changes in the mechanical properties and density are clearly associated with the thermally reversing window in Ge15Te85 ? xInx glasses in the composition range 3  x  7. In addition, a local minimum is seen in density and hardness around x = 9, the chemical threshold of the system. Further, micro-Raman studies reveal that as-quenched Ge15Te85 ? xInx samples exhibit two prominent peaks, at 123 cm? 1 and 155 cm? 1. In thermally annealed samples, the peaks at 120 cm? 1 and 140 cm? 1, which are due to crystalline Te, emerge as the strongest peaks. The Raman spectra of polished samples are similar to those of annealed samples, with strong peaks at 123 cm? 1 and 141 cm? 1. The spectra of lightly polished samples outside the thermally reversing window resemble those of thermally annealed samples; however, the spectra of glasses with compositions in the thermally reversing window resemble those of as-quenched samples. This observation confirms the earlier idea that compositions in the thermally reversing window are non-aging and are more stable.  相似文献   

8.
Pulok Pattanayak 《Journal of Non》2008,354(32):3824-3827
The composition dependence of different thermal parameters such as glass transition temperature, non-reversing enthalpy, thermal diffusivity etc., of bulk As45Te55−xIx chalcohalide glasses (3 ? x ? 10), has been evaluated using the temperature modulated Alternating Differential Scanning Calorimetry (ADSC) and Photo Thermal Deflection (PTD) studies. It is found that there is not much variation in the glass transition temperature of As45Te55−xIx glasses, even though there is a wide variation in the average coordination number . This observation has been understood on the basis that the variation in glass transition temperature of network glasses is dictated by the variation in average bond energy rather than . Further, it is found that both the non-reversing enthalpy (ΔHnr) and the thermal diffusivity (α) exhibit a sharp minimum at a composition x = 6. A broad hump is also seen in glass transition and crystallization temperatures in the composition range 5 ? x ? 7. The results obtained clearly indicate a sharp thermally reversing window in As45Te55−xIx chalcohalide glasses around the composition x = 6.  相似文献   

9.
Bulk amorphous chalcogenide samples of Ge20Te80−xSex (x = 0, 1, 2, 8) have been prepared using a melting-quench method, and characterized by the differential scanning calorimetry, X-ray powder diffraction, high-resolution transmission electron microscopy, specific heat and thermal conductivity measurements. The low temperature specific heat measurements identified some localized low-frequency oscillation modes (Einstein modes) in conjunction with a Debye-like behavior. It was found that with increasing Se concentration the characteristic Debye temperature did not change whereas the Einstein temperature slightly decreased. The lattice thermal conductivity of all Ge20Te80−xSex samples exhibited typical amorphous heat conduction behavior, which has been discussed in connection with the phonon mean free path and in the context of a phenomenological model of heat conduction for highly disordered system.  相似文献   

10.
The far-infrared spectra of Ge10Se90−xTex where x = 0, 10, 20, 30, 40, 50 glassy alloys were measured in the wavenumber region 50-650 cm−1 at room temperature. The results were explained in terms of the vibrations of the isolated molecular units. The addition of Te in Ge10Se90 has shown the appearance of GeTe2 and GeTe4 molecular units and vibrations of Se-Te bond as Se8−xTex mixed rings. The assignment of various absorption bands has been made on the basis of absorption spectra of pure Se, binary Ge-Se, Ge-Te, Se-Te and ternary Ge-Se-Te glassy alloys. The far-infrared transmission spectrum has been found to shift a little towards lower wavenumber side with the addition of Te content to Ge10Se90. The addition of Te to Ge-Se system replacing Se has found to reduce the Se-Se bonds and Ge-Se bonds and leads to the formation of Se-Te, Ge-Te and Te-Te bonds.  相似文献   

11.
The local structure of Ge and Ga ions in (1 − x)(Ge0.25Ga0.10S0.65)-xCsBr glasses (x = 0.00, 0.05, 0.10 and 0.12) were investigated using extended X-ray absorption fine structure (EXAFS) spectroscopy. CsBr formed [GaS3/2Br] structural units in glass while Ge ions remained in GeS4/2 tetrahedra, unaffected by CsBr addition. Rare-earth ions can be surrounded by Br ions only when CsBr/Ga ratio in glass became larger than unity.  相似文献   

12.
The influence of indium doping on the capacitance variation with temperature and applied bias voltage of Ge2Sb2Te5 is investigated. The capacitance-voltage (C-V) measurements of In0.3Ge2Sb2Te5 and Ge2Sb2Te5 thin films were performed for a sweep of voltages from −20 to +20 V at different temperatures. The results show different capacitance behavior of In0.3Ge2Sb2Te5 and Ge2Sb2Te5 films. As the temperature increases the capacitance of the indium-doped sample decreases and becomes negative. The negative capacitance effect might be attributed to a significant increase of the film’s conductivity due to temperature and applied bias voltage. The nonlinearity in the capacitance and conductivity could be related to the nucleation mechanism as the temperature becomes close to the amorphous-crystalline transition temperature.  相似文献   

13.
《Journal of Non》1986,86(3):265-270
The influence of indium on the optical and properties of As2−xTe3−xxIn2x, As20−xTe80−xIn2x and Ge20−xSe80−xIn2x is described. In Te-containing glasses the Fermi level is shifted by 0.05 eV and in Se-containing glasses by 0.2 eV towards the valence band.  相似文献   

14.
S. Sen  S. Joshi  B.G. Aitken  S. Khalid 《Journal of Non》2008,354(40-41):4620-4625
The nearest-neighbor coordination environments of Te atoms in GexTe100?x glasses with x = 15 and 20 and in AsxTe100?x glasses with 40 ? x ? 65 have been studied with Te K-edge EXAFS spectroscopy. The average coordination number of Te atoms in all glasses is found to be ~2.0 and no violation of the 8-N rule is observed. The compositional makeup of the first coordination shell of Te atoms indicates that chemical order is largely preserved in both glass-forming binary systems. Sudden changes in the Te coordination environment and violation of chemical order are observed at the stoichiometric As40Te60 glass implying formation of a constrained network. The compositional dependence of the physical properties in both systems can be correlated to short-range chemical order.  相似文献   

15.
The structure of binary GexS100 − x chalcogenide glasses (10 < x < 30) is determined by high-resolution X-ray photoelectron spectroscopy (XPS). On the basis of compositional dependence of fitting parameters for Ge and S core level XPS spectra, the ratio between edge- and corner-shared tetrahedra is determined. It is shown that short-range order of these glasses includes fragments of high-temperature crystalline form of GeS2. When subjected to X-irradiation, the structure of investigated glasses appears to become more homogeneous than that of the as-prepared samples.  相似文献   

16.
InxGa1−xN quantum dots (QDs) were grown on GaN/sapphire (0 0 0 1) substrates by employing nitridation of nano-alloyed droplet (NNAD) method using metal-organic chemical vapor deposition (MOCVD). In+Ga alloy droplets were initially formed by flowing the precursors TMIn and TMGa. Density of the In+Ga alloy droplets was increased with increasing precursors flow rate; however, the droplet size was scarcely changed in the range of about 100–200 nm. Two cases of InxGa1−xN QDs growth were investigated by varying the nitridation time and the growth temperature. It was observed that the InxGa1−xN QDs size can be easily changed by controlling the nitridation process at the temperature between 680 and 700 °C for the time of 5–30 min. Self-assembled InxGa1−xN QDs were successfully grown by employing NNAD method.  相似文献   

17.
Glass-forming regions were investigated for the binary xM2S + (1 − x)GeS2 (M=K, Rb, Cs) systems. Glasses were prepared from 0?x?0.20 mole fraction alkali sulfide using a novel preparation route involving the decomposition of the alkali hydrosulfides in situ. At higher alkali concentrations near x=0.33, the glass-forming regions are limited by the readily formed adamantane-like M4Ge4S10 crystals. Structural characterization of the glasses and polycrystals for x?0.33 were performed using Raman scattering and IR absorption. Terminal Ge-S vibrational modes, observed between 473 and 479 cm−1, increased in intensity and decreased in frequency with increasing alkali modifier content. Glass transition temperatures decreased with increasing alkali modifier, ranging from 250 to 215 °C. Corresponding crystallization onset temperatures were between 340 and 385 °C. DC conductivity values of the glasses ranged from 10−10 to 10−7 (Ω cm)−1 with activation energies between 0.54 and 0.93 eV for the temperature range of ∼100-250 °C. Higher ionic conductivities were observed with increasing alkali concentration and decreasing alkali radii. Additionally, an increase in the activation energy was observed above the glass transition temperature.  相似文献   

18.
The current-voltage characteristics related to switching phenomena in silver doped arsenic telluride glasses, As20Te80−xAgx and As40Te60−xAgx, have been investigated over a wide composition range (4?x?14). The samples are found to show threshold switching behavior with the number of switching cycles withstood by the samples depending on the ON state current. The switching voltages are found to decrease with increase in silver content and a sharp minimum is seen at the composition x=12 for the As20Te80−xAgx glasses and x=11 for the As40Te60−xAgx glasses. An effort has been made to understand the observed composition dependence on the basis of increase in the conductance of the samples with silver addition and local structural effects.  相似文献   

19.
Nobuaki Terakado 《Journal of Non》2008,354(18):1992-1999
Oxy-chalcogenide glasses with compositions of xGeO2-(100 − x)GeS2, where 0 ? x ? 100 mol%, have been prepared and studied in terms of their structures and optical properties. X-ray fluorescence spectroscopy shows that Ge:S ratio can deviate from GeS2 by ∼10 at.%, depending critically upon the preparation conditions. Raman scattering spectroscopy suggests that stoichiometric GeO2-GeS2 glasses have a heterogeneous structure in the scale of 1-100 nm. The optical gaps are nearly constant at 3.0-3.5 eV for glasses with 0 ? x ? 80 mol% and abruptly increase to ∼6 eV in GeO2. This dependence suggests that the optical gap is governed by GeS2 clusters, which are isolated and/or percolated. Composition-deviated glasses appear as orange and brown, and these glasses seem to have more inhomogeneous structures.  相似文献   

20.
Different compositions of Inx(Se0.75Te0.25)100 − x (where 0 ≤ x ≤ 10 at.%) chalcogenide glasses were prepared by the usual melt quench technique. Chalcogenide thin films of these glasses were prepared by using thermal evaporation method. The film transmittance (T(λ)) at normal incidence for these films was measured in the wavelength range 400-2500 nm using a double beam spectrophotometer. Successfully applying Swanepoel's method helps us to determine the film thickness and the real (n) and imaginary (k) parts of the complex index of refraction with high accuracy. Optical absorption measurements show that, the fundamental absorption is due to the allowed non-direct transitions. It was found that, the addition of In content leads to the increase of the refractive index increases while the optical band gap decreases. The obtained results are well discussed in terms of the chemical bond approach and the cohesive energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号