首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The development of polymeric systems with high ionic conductivity is one of the main objectives in Li rechargeable battery. In the present study, the different composition of PVA-LiCF3SO3 polymer electrolyte has been prepared by solution cast technique using DMSO as solvent. The FTIR study confirms the polymer-salt complex formation. The amorphous nature of the polymer has been confirmed by XRD analysis. DSC measurements show decrease in Tg with increasing salt concentration. The temperature dependent conductivity obeys Arrhenius relationship. The maximum conductivity has been observed in the order of 7 × 10− 4 S cm− 1 for 25 mol% of LiCF3SO3. The activation energy has been found to be 0.16 eV. The two peaks have been observed in the dielectric loss spectrum which shows two types of relaxation α and β.  相似文献   

2.
The present study focuses on characterizing PVA: NH4X (X = Cl, Br, I) proton conducting polymer electrolyte prepared by solution casting technique using XRD, FTIR and ac impedance spectroscopic studies. The XRD patterns of all the prepared polymer electrolytes reveal the amorphous nature of the films. The FTIR spectroscopic study indicates the detailed interaction of PVA with proton. From ac impedance spectroscopic studies, it has been found that PVA doped with NH4I have high ionic conductivity (2.5 × 10−3S cm−1) than PVA doped with NH4Br (5.7 × 10−4S cm−1) and NH4Cl (1.0 × 10−5S cm−1) polymer electrolytes. This is due to the large anionic size and low lattice energy of NH4I (in comparison with NH4Br and NH4Cl).The temperature dependence of ionic conductivity for all the PVA: NH4X (X = Cl, Br, I) polymer films obey Arrhenius equation. Ionic transference number measured has been found to be in the range of 0.93-0.96 for all the polymer electrolytes proving that the total conductivity is mainly due to ions.  相似文献   

3.
Transport property and structural investigation have been carried out on newly synthesized Ag+ ion conducting composite electrolyte system. The composite electrolyte system (1 − x)[0.75AgI:0.25AgCl]:xTiO2, where 0 ? x ? 0.5 (in molar weight fraction) has been synthesized by melt quenching and annealing methods. The chemical compound TiO2 (second phase dispersoid) dispersed in different compositions in a quenched (0.75AgI:0.25AgCl) mixed system/solid solution; this solid solution was used as a first phase host salt in place of AgI. The different preparation routes were adopted for the composite electrolyte system. Composition x = 0.1 exhibited highest conductivity at room temperature. The composite system 0.9[0.75AgI:0.25AgCl]:0.1TiO2 was synthesized at different soaking times by melt quenching method. The system exhibited optimum conductivity at 20 min soaking time (σrt ≈ 1.4 × 10−3 S/cm). The ac conductivity has been measured from Z′-Z″ (Cole-Cole) complex impedance plots using impedance spectroscopic (IS) technique. The electrical conductivity as a function of temperature and frequency has been studied, and activation energy Ea, was calculated from Arrhenius plots for all compositions (0 ? x ? 0.5). The dc conductivity value has been evaluated from Log σ vs. log f plots. Structural characterization studies were carried out by X-ray diffraction (XRD) and differential thermal analysis (DSC) techniques.  相似文献   

4.
Biodegradable corn starch-lithium hexafluorophosphate (LiPF6) based biopolymer electrolytes were prepared by solution casting technique. Ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF6) was doped into the polymer matrix. Upon addition of 50 wt.% BmImPF6, the maximum ionic conductivity of (1.47 ± 0.02) × 10− 4 Scm− 1 was achieved due to its higher amorphous region. This result had been further proven in ATR-FTIR study. Frequency dependence of conductivity and dielectric studies reveal the occurrence of polarization at the electrolyte-electrode interface and thus form the electrical double layer, asserting the non-Debye characteristic of polymer electrolytes. This result is in good agreement with dielectric loss tangent study. Based on the changes in shift, changes in intensity, changes in shape and existence of some new peaks, attenuated total reflectance-Fourier Transform Infrared (ATR-FTIR) divulged the complexation between corn starch, LiPF6 and BmImPF6, as shown in the spectra.  相似文献   

5.
S. Ramesh  Chiam-Wen Liew 《Journal of Non》2011,357(10):2132-2138
1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl imide), BmImTFSI based poly(methyl methacrylate)-poly (vinyl chloride), PMMA-PVC gel polymer electrolytes were prepared by solution casting technique. These ionic liquid-based gel polymer electrolytes exhibit Arrhenius type temperature dependence of ionic conductivity. The highest ionic conductivity of (8.08 ± 0.01) × 10− 4 Scm−1 was achieved at 80 °C upon addition of 60 wt.% of BmImTFSI. X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies revealed the amorphous nature and morphology of these polymer electrolytes, respectively. The lower coherence length of the peak inferred the higher amorphous degree in these polymer matrices. Decreases in Tg and Tm indicate the flexibility of polymer backbone. The amorphous behavior of these ionic liquid-based gel polymer electrolytes are also enhanced as shown in differential scanning calorimetry (DSC) analysis. On the contrary, thermogravimetric analysis (TGA) divulges that the thermal stability of polymer electrolytes has been improved upon impregnation of BmImTFSI.  相似文献   

6.
S. Ramesh  R. Shanti 《Journal of Non》2011,357(5):1357-1363
Thin films composed of poly (methyl methacrylate) (PMMA), lithium tetraborate (Li2B4O7) and ethylene carbonate (EC) were prepared by solution casting method. The highest ionic conductivity at room temperature was achieved for the composition PMMA:Li2B4O7:EC (42:18:40) with the value 1.29 × 10−5 S cm−1. The presence of plasticizer in the polymer complex is crucial in improving the ionic conductivity by increasing the concentration of free mobile ions through the structural conversion from crystalline to amorphous phase. This conversion lowers the viscosity of the polymer complex. Conductivity-temperature plots were found to obey Williams-Landel-Ferry (WLF) mechanism. Dielectric data was analyzed using the dielectric permittivity (ε′) and dielectric modulus (M′) of the samples. Fourier transform infrared (FTIR) studies confirmed that complexation occurs between PMMA, Li2B4O7 and EC. Thermal stability of the polymer complex, which decreases with the addition of plasticizer (EC), was determined using thermal gravimetric analysis (TGA).  相似文献   

7.
Investigations on ion transport behavior of a new fast Ag+ ion conducting composite electrolyte system: 0.85[0.75AgI:0.25AgCl]: 0.1CeO2 are reported. An alternate host: ‘[0.75AgI:0.25AgCl] mixed system/solid solution’ has been used as first-phase host matrix salt, in place of the traditional host AgI, while the micron-size particles of an insulating and chemically inert CeO2 as second-phase dispersoid. The soaking time, plays important role in determining the conductivity enhancement in the composite system. The system: 0.85[0.75AgI:0.25AgCl]:0.1CeO2 prepared at soaking time ∼10 min. exhibited optimum conductivity:σrt ∼ 1.2 × 10−3 S cm−1 at room temperature, which is an order of magnitude higher than that of the pure host. Structural characterization studies were performed by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Temperature dependent measurement on the basic ionic parameters viz. conductivity (σ), ionic mobility (μ), mobile ion concentration (n), room temperature ionic transference number (tion) and ionic drift velocity (vd) have been carried out on the system.  相似文献   

8.
E. Mansour 《Journal of Non》2011,357(5):1364-3380
Fourier transformation infrared spectra, density and DC electrical conductivity of 30Li2O · xCeO2⋅(70 − x)B2O3 glasses, where x ranged between 0 and 15 mol%, have been investigated. The results suggested that CeO2 plays the role of network modifier up to 7.5 mol%. At higher concentrations it plays a dual role; where most of ceria plays the role of network former. The density was observed to increase with increasing CeO2 content. The effect on density of the oxides in the glasses investigated is in the succession: B2O3 < Li2O < CeO2. Most of CeO2 content was found to be associated with B2O3 network to convert BO3 into B O4 units. The contribution of Li+ ions in the conduction process is much more than that due to small polarons. The conductivity of the glasses is mostly controlled by the Li+ ions concentration rather than the activation energy for CeO2 > 5 mol%. Lower than 5 mol% CeO2 the conductivity is controlled by both factors. The dependence of W on BO4 content supports the idea of ionic conduction in these glasses.  相似文献   

9.
The well known and characterized fast ion conducting (FIC) LiI + Li2S + GeS2 glass-forming system has been further optimized for higher ionic conductivity and improved thermal and chemical stability required for next generation solid electrolyte applications by doping with Ga2S3 and La2S3. These trivalent dopants are expected to eliminate terminal and non-bridging sulfur (NBS) anions thereby increasing the network connectivity while at the same time increasing the Li+ ion conductivity by creating lower basicity [(Ga or La)S4/2] anion sites. Consistent with the finding that the glass-forming range for the Ga2S3 doped compositions is larger than that for the La2S3 compositions, the addition of Ga2S3 is found to eliminate NBS units to create bridging sulfur (BS) units that not only gives an improvement to the thermal stability, but also maintains and in some cases increases the ionic conductivity. The compositions with the highest Ga2S3 content showed the highest Tgs of ∼325 °C. The addition of La2S3 to the base glasses, by comparison, is found to create NBS by forming high coordination octahedral LaS63− sites, but yet still improved the chemical stability of the glass in dry air and retained its high ionic conductivity and thermal stability. Significantly, at comparable concentrations of Li2S and Ga2S3 or La2S3, the La2S3-doped glasses showed the higher conductivities. The addition of the LiI to the glass compositions not only improved the glass-forming ability of the compositions, but also increased the ionic conductivity glasses. LiI concentrations from 0 to 40 mol% improved the conductivities of the Ga2S3 glasses from ∼10−5 to ∼10−3 (Ω cm)−1 and of the La2S3 glasses from ∼10−4 to ∼10−3 (Ω cm)−1 at room temperature. A maximum conductivity of ∼10−3 (Ω cm)−1 at room temperature was observed for all of the glasses and this value is comparable to some of the best Li ion conductors in a sulfide glass system. Yet these new compositions are markedly more thermally and chemically stable than most Li+ ion conducting sulfide glasses. LiI additions decreased the Tgs and Tcs of the glasses, but increased the stability towards crystallization (Tc − Tg).  相似文献   

10.
E. Sheha 《Journal of Non》2010,356(43):2282-2285
In this work, solid acid membrane consisting of poly(vinyl alcohol) (PVA), ammonium bromide (NH4Br) and sulfuric acid (SA) has been prepared by a solution casting technique method. X-ray diffraction of the (PVA)0.75(NH4Br)0.25(H2SO4)xM polymer matrix and pure (PVA)0.75(NH4Br)0.25 revealed the difference in crystallinity between them. The effect of different amounts of SA on the conductivity of the polymer electrolytes was studied. The ionic conductivity of the prepared electrolytes can reach 3.1 × 10−2 S cm−1 at room temperature. The conductivity measurements carried out at different temperatures indicate that all the films follow Arrhenius behavior and that the activation energy decreases with the increase in SA concentration. The a.c. conductivity seems to follow the universal power law.  相似文献   

11.
SBA-15 mesoporous material was prepared by the simple hydrothermal process and added to poly(ethylene oxide) (PEO) and lithium percholorate (LiClO4) as a filler. X-ray Diffractometry (XRD), Differential Scanning Calorimetry (DSC) and Scanning Electron Microscopy (SEM) were used to determine the characteristics of the composite polymer electrolyte. The SEM of the electrolyte containing 10 wt% of SBA-15 confirms the highest miscibility and amorphous nature. SBA-15 doped (PEO + LiClO4) polymer electrolytes have shown improved conductivity over the pure PEO and (PEO + LiClO4) electrolyte. The mesoporous SBA-15 acted as crystal cores and fined the crystallites thus decreasing the crystallinity, which provided a much more continuous amorphous domain for Li+ ions to move easily in the (PEO + LiClO4) electrolyte.  相似文献   

12.
This paper describes the preparation and characterization of lithium fluoroalkylphosphate-containing composite polymer electrolyte based on a polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP) matrix. A mixture of ethylene carbonate and diethyl carbonate was used as a plasticizing agent and nanoscopic Al2O3 as a filler. The membranes were characterized by ac impedance, SEM, DSC, FTIR and fluorescence. An electrolyte with 2.5 wt% Al2O3 exhibited a conductivity of 9.8 × 10−4 S cm−1 at ambient temperature. It was found that filler contents above 2.5 wt% rendered the membranes less conducting.  相似文献   

13.
The thermodynamics of the redox equilibrium of Cu+/Cu2+ were determined by square-wave voltammetry in glass melts with the base mol% compositions x Na2O · (100 − x) SiO2 (x = 15, 20, 26 and 33) and (26 − x) Na2O · x CaO · 74 SiO2 (x = 0, 5, 10 and 15) doped with 1 mol% CuO in the temperature range from 850 to 1150 °C. All recorded voltammograms showed two maxima attributed to the reductions of Cu2+ to Cu+ and Cu+ to metallic copper. Both peaks are shifted to smaller potentials with decreasing temperature. With increasing melt basicity, the [Cu+]/[Cu2+]-ratio first increases, and remains constant for optical basicities >0.56. The effect of composition on the redox equilibrium is explained by the incorporation of both Cu+ and Cu2+ in octahedral coordination into the melt structure.  相似文献   

14.
This study was explored in series of the optical, thermal, and structure properties based on 60P2O5-10Al2O3-30ZnO (PAZ) glasses system that doped with varied rare-earth (RE) elements Yb2O3/Er2O3. The glass transition temperature, softening temperature and chemical durability were increased with RE-doping concentrations increasing, whereas thermal expansion coefficient was decreased. In the optical properties, the absorption and emission intensities also increase with RE-doping concentrations increasing, When Er2O3 and Yb2O3 concentrations are over than 3 mol% in the Er3+-doped PAZ system and Yb3+-doped concentration is over than 3 mol% for Er3+/Yb3+-codoped PAZ system, the emission intensity significantly decreases presumably due to concentration quenching, formation of the ions clustering, and OH groups in the glasses network. It is suggested that the maximum emission cross-section (σe) is 7.64 × 10− 21 cm2 at 1535 nm is observed for 3 mol% Er3+-doped PAZ glasses. Moreover, the maximum σe × full-width-at-half-maximum is 327.8 for 5 mol% Er3+-doped PAZ glasses.  相似文献   

15.
Dielectric constant ε, loss tanδ and ac conductivity σac of 40CaO-xWO3-(60−x)P2O5 (with 0?x?15) glasses are studied over a range of frequencies and temperature. The dielectric breakdown strength of these glasses is also determined at room temperature. The values of dielectric parameters, viz., ε, tanδ and σac of CaO-P2O5 glasses are found to decrease with the introduction of WO3 up to 3 mol% and increase with further increase in the concentration of WO3; the probable reasons for such an increase are identified and explained with the aid of IR spectra and differential thermal analysis of these glasses. The variation of tanδ with temperature at different frequencies of CaO-P2O5 glasses has exhibited dielectric relaxation effects with decreasing relaxation intensity with increase in the concentration of WO3 from 0 to 3 mol%; such relaxation effects seem to have been absent in glasses containing WO3 beyond 3 mol%. The relaxation phenomenon has been analysed by a pseudo-Cole-Cole plot method and the possible mechanism responsible for such relaxation effects has been suggested.  相似文献   

16.
3.5 mol%, 6.5 mol%, 9.5 mol%, and 12.5 mol% BaF2 were gradually substituted for BaO in 0.3 mol% Tm2O3 doped 12.5 BaO-12.5 Ga2O3-75 GeO2 (BGG) glasses to study the effect of the substitution on the OH elimination and emission properties. The FTIR spectral demonstrated that the substitution effectively eliminated OH groups and 9.5 mol% BaF2 was enough for the OH elimination. The J-O parameters of all the samples were calculated according to J-O theory. The calculation showed that the Ω2 parameter decreased monotonically with BaF2 content increasing, while Ω4 and Ω6 did not change much. The radiative lifetime increased while BaF2 content increased as well. The emission cross section of 3F4 → 3H6 transition was calculated by the F-L formula. However, it decreased with the gradual BaF2 addition.

Research Highlights

? OH groups were eliminated by the substitution of BaF2 for BaO in (BGG) glass. ? The optimal substitution level of BaF2 was 9.5 mol% for OH elimination. ? The Ω2 parameter decreased monotonically by the elimination. ? The emission cross section of 3F4 → 3H6 transition was decreased by the substitution.  相似文献   

17.
F.E. Salman 《Journal of Non》2011,357(14):2658-2662
A series of glasses with formula (SiO2)0.7−x(Na2O)0.3(Fe2O3)x with ( 0.0 ≤ x ≤ 0.20) were prepared and studied by means of AC measurements in the frequency range 20 kHz to 13 MHz at room temperature. The study of frequency dependence of both dielectric constant ε' and dielectric loss ε" showed a decrease of both quantities with increasing frequency. The results have been explained on the basis of frequency assistance of electron hopping besides electron polarization. From the Cole-Cole diagram the values of the static dielectric constant εs, infinity dielectric constant ε∞, macroscopic time constant τ, and molecular time constant τm are calculated for the studied amorphous samples. The frequency dependence of the ac conductivity obeys a power relation, that is σac (ω) = Α ωs. The obtained values of the constant s lie in the range of 0.7 ≤ s ≤ 1 in agreement with the theoretical value which confirms the simple quantum mechanical tunneling (QMT) model. The increase in ac conductivity with iron concentration is likely to arise due to structural changes occurring in the glass network. The structure of a glass with similar composition was published and showed clustering of Fe2+ and Fe3+ ions which favor electron hopping and provide pathways for charge transport.  相似文献   

18.
E. ?entürk  S.E. San 《Journal of Non》2008,354(30):3525-3528
The electrical properties of carbon nano-balls’ and 4-dimethylaminoazobenzene-2′-carboxylic acid doped dispersed nematic liquid crystal composite were investigated by impedance spectroscopy technique. The conductivity and capacitance were measured in the frequency range 100 kHz-1 MHz and temperature range 300-380 K. The loss peak was observed in the dielectric loss spectra and was identified as nearly-Debye type relaxation. Cole-Cole plots have been used to describe the characteristic changes of electrical properties in mentioned temperature interval. The sample presents monodispersive relaxation behavior with a relaxation time of ∼10−7 s. The relaxation process is attributed to the dipolar rotation of the long molecular axis and the activation energy is found to be 0.097 eV.  相似文献   

19.
A series of new glasses of 70TeO2-(20 − x) ZnO-xPbO − 5La2O3-2.5K2O-2.5Na2O (mol%) doped with Yb3+ is presented. Thermal stability, spectra and laser properties of Yb3+ ions have been measured. It found that 70TeO2-15PbO-5ZnO-5La2O3-2.5K2O-2.5Na2O composition glass had fine stability ((TxTg)>190 °C), high-stimulated emission cross-section of 1.25 pm2 for the 2F5/2 → 2F7/2 transition and existed measured fluorescence lifetime of 0.94 ms and the broad fluorescence effective linewidth of 72 nm. Evaluated from the good potential laser parameters, this system glass is excellent for short pulse generation in diode pumped lasers, short pulse generation tunable lasers, high-peak power and high-average power lasers.  相似文献   

20.
Fluorescence waveforms from the (3P0 + 3P1) manifold in Pr3+ doped ZBAN glass at wavelengths of 520, 635 and 695 nm were measured for Pr3+ concentrations from 4 to 12 mol%. The waveforms were found to be non-exponential with decay rates rapidly increasing with Pr3+ concentration and independent of whether the 3P0 or the 3P1 level was excited. The multipolar energy transfer model was used to analyse the waveforms and this showed that concentration quenching was due to cross-relaxation by dipole-dipole interaction. The critical concentration, at which the cross-relaxation rate equals the intrinsic decay rate, was found to be of 2.06 × 1026 m−3 (1.20 mol%). There was no evidence of excitation diffusion for Pr3+ concentrations of up to 12 mol%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号