首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Metallic glass microstructures with high aspect ratios for micro-electro-mechanical system applications have been fabricated by micro-electro-discharge machining and selective electrochemical dissolution methods. Micro-holes and three-dimensional microstructures machined on the La62Al14Ni12Cu12, Zr55Al10Ni5Cu30 and Cu46Zr44Al7Y3 bulk metallic glasses by micro-electro-discharge machining are evaluated by using X-ray diffraction, scanning electron microscopy, and nanoindentation. The experimental results demonstrate that the machined samples kept their amorphous structure without devitrification, and their machining characteristics are related to the thermo-physical properties of the alloys and the electrode diameters. Porous, single-pore and thin-walled Zr-based metallic glass tubes with micro-pore structures can be prepared by selective electrochemical dissolution method. The high aspect ratio microstructures fabricated by the two methods have the potential applications as micro-nozzles, polymer micro-injection molding tools, micro-channels or micro-flow meters in micro-electro-mechanical system devices.  相似文献   

2.
We report the formation of bulk nanocrystalline alloys from a Pr-based bulk metallic glass-forming alloy by doping iron. The microstructure of the alloys can be tuned progressively from full glassy state to composite with nanocrystalline particles in the glassy matrix, and finally into nanostructured state accompanying with the gradual magnetic and mechanical changes. The role of the addition in the control of microstructure and magnetic property, the mechanism for the nanocrystalline formation induced by addition, and the relation between the microstructure and properties are discussed.  相似文献   

3.
Recently, a series of quaternary Zr-based bulk metallic glasses (BMGs), i.e., Zr53Cu18.7Ni12Al16.3, Zr51.9Cu23.3Ni10.5Al14.3 and Zr50.7Cu28Ni9Al12.3, have been developed and their glass-forming ability (GFA) increases with Cu concentration. In this work, atomic structures of the three BMGs were rebuilt by reverse Monte Carlo simulations based on the reduced pair distribution functions measured by high energy X-ray diffraction. The results show that a certain amount of substitution of short Zr-Cu, Cu-Cu pairs with long Zr-Zr and Zr-Al pairs enhances the local denser packing of Kasper polyhedral centered by Zr and Al atoms. A cell sub-divided method is proposed to describe the fluctuation of local number density which is found to follow the normal distribution function. The largest possible free volume in the three alloys is found to approaches to 3.8 Å. For the three alloys, the enhancement of GFA with increasing Cu content is due to the increase in the fluctuation degree of local density instead of the dense packing.  相似文献   

4.
S.C. Hendy  A. Edgar 《Journal of Non》2006,352(5):415-422
The structure of fluorochlorozirconate glass with composition Zr0.55Ba0.20La0.05Na0.20F2.95−xClx with 0 ? x ? 0.9, i.e., up to ∼30% chlorine anions, has been simulated using molecular dynamics methods applied to a unit cell comprising 790 ions. The structure comprises a network of (mainly) corner and edge-linked ZrF8−pClp, ZrF7−qClq and LaF7−rClr polyhedra with sodium, barium and additional chlorine ions occupying irregular positions in space between the polyhedra. For chlorine concentrations above about 15%, the number of chlorine ions occupying corner bridging positions increases markedly which is expected to reduce the glass temperature. For chlorine concentrations greater than about 20%, the spatial distribution of ions is not uniform and clustering into zirconium rich and sodium, barium and chlorine rich regions occurs. The possibility that this phenomenon may be a precursor to the observed precipitation of barium chloride crystals just above the glass temperature is discussed.  相似文献   

5.
A.J. Letha 《Journal of Non》2009,355(2):148-153
Two-dimensional device modelling for hydrogenated amorphous silicon p+-n-n+ solar cell has been carried out by using MEDICI device simulator and the influence of absorber layer thickness, doping concentration, and dangling bond density of states in absorber layer on photo parameters are investigated. A strong correlation between n-type doping and dangling bond density in the absorber layer relative to the stability of the a-Si:H solar cell is observed. An increased stabilized efficiency is obtained when n-type dopant concentration in the absorber layer is higher than optimum value for higher initial efficiency. The window layer (p+ layer) of the device is designed with a three layered structure of graded doping for higher device performance. This window layer structure in the a-Si:H p+-n-n+ cell resulted in higher open circuit voltage and fill factor and hence higher efficiency of the cell. The efficiency of the modified amorphous silicon solar cell structure is found to be 12.85%.  相似文献   

6.
X.Y. Li  A.X. Lu  Zh.H. Xiao  Ch.G. Zuo 《Journal of Non》2008,354(31):3678-3684
Two series (A and B series) of oxynitride glasses were prepared by melting batches at 1580 °C for 3 h under local CO reducing atmosphere in a Si-Mo-heated resistance furnace. Nominal compositions of A and B series glasses in equivalent percent (eq.%) are (28−x)Y:xMg:48Si:24Al:83O:17N and (28−x)Y:xMg:56Si:16Al:83O:17N (x = 0, 7, 14, 21), respectively. The influences of Mg/Y and Al/Si ratios on the properties such as glass transition temperature (Tg), crystallization temperature (TC), knoop hardness (H), three-point bending strength (σ) and chemical durability in 20%HF were investigated. At the same time, the relationship between these properties and the structures of the glasses were discussed. At constant ratio Si-Al-O-N, Tg decreases nonlinearly but glass leaching ratio increases linearly with increasing Mg/Y ratio. However, H and σ increase first and then decrease as the Mg/Y ratio increases. When the Y/Mg/O/N ratio is constant, Tg decreases slightly but H and σ increase slightly as the Al/Si ratio increases.  相似文献   

7.
Chun-Li Dai  Yi Li 《Journal of Non》2008,354(31):3659-3665
A new composition region of bulk metallic glass formation, around Cu52Zr40Ti8, was discovered in the Cu-Zr-Ti ternary system, for which monolithic bulk metallic glass rods of 4 mm in diameter can be fabricated using copper mold casting. The solidification of the Cu52Zr40Ti8 deeply-undercooled liquid mainly undergoes a univariant eutectic reaction, (L → Cu10Zr7 + CuZr), even though this composition was predicted to be a ternary eutectic point (L → Cu10Zr7 + CuZr + Cu2ZrTi) by CALPHAD calculations. With respect to the deep-eutectic reaction of (L → Cu10Zr7 + CuZr) in the Cu-Zr binary alloys, alloying of Ti has a significant effect on further stabilizing the liquid, as indicated as a drop of the univariant eutectic groove, limiting the coupled growth of two crystalline phases, hence increasing the glass-forming ability.  相似文献   

8.
S. Sen  P. Yu  B.Z. Pevzner 《Journal of Non》2008,354(33):4005-4011
The short-range structure and network speciation have been studied in a series of beryllium boroaluminate glasses using 11B, 27Al and 9Be NMR spectroscopy. All glasses are characterized by a coexistence of BeO4, BO3, BO4, AlO4, AlO5 and AlO6 species. The concentrations of BO3, AlO5 and AlO6 species in these glasses are significantly higher and the geometry of the B-O and Al-O coordination polyhedra are unusually disordered compared to those in other alkali and alkaline-earth boroaluminate glasses reported previously in the literature. These results indicate that Be atoms may not play the typical role of a network-modifying cation in these glasses. This structural scenario is consistent with the highest field strength and electronegativity of Be among all alkali and alkaline-earth metals.  相似文献   

9.
Glasses of the system: (70−x) TeO2 + 15B2O3 + 15P2O5 + xLi2O, where x = 5, 10, 15, 20, 25 and 30 mol% were prepared by melt quench technique. Dependencies of their glass transition temperatures (Tg) and infrared (IR) absorption spectra on composition were investigated. It is found that the gradual replacement of oxides, TeO2 by Li2O, decreases the glass transition temperature and increases the fragility of the glasses. Also, IR spectra revealed broad weak and strong absorption bands in the investigated range of wave numbers from 4000 to 400 cm−1. These bands were assigned to their corresponding bond modes of vibration with relation to the glass structure.  相似文献   

10.
G. Li  Y.C. Li  T. Xu  J. Liu  R.P. Liu 《Journal of Non》2009,355(9):521-524
The existence of special covalently bonded short-range ordering structures in a Mg65Cu25Tb10 bulk metallic glass (BMG) is confirmed by thermal expansion and compression behavior. Under ambient conditions the linear thermal expansion coefficient obtained is almost constant in the glassy state with a value of 4.0 × 10−5 K−1. By fitting the static equation of state at room temperature under ambient conditions we find the value for bulk modulus B of 48.7 GPa, which is in excellent agreement with the experimental study by pulse-echo techniques of 44.7 GPa. Unlike many bulk metallic glasses, such as Zr- and Pd-based, which bulk modulus is much larger than 100 GPa, the value B of Mg65Cu25Tb10 BMG falls into the range of SiO2 and fluorozirconate glass ZBLAN. Moreover, the elastic constant of the Mg65Cu25Tb10 BMG is almost the same as those of ZBLAN. No evidence for the high-pressure phase transitions of the Mg65Cu25Tb10 BMG has been found up to 31.19 GPa at room temperature.  相似文献   

11.
Nobuaki Terakado 《Journal of Non》2008,354(18):1992-1999
Oxy-chalcogenide glasses with compositions of xGeO2-(100 − x)GeS2, where 0 ? x ? 100 mol%, have been prepared and studied in terms of their structures and optical properties. X-ray fluorescence spectroscopy shows that Ge:S ratio can deviate from GeS2 by ∼10 at.%, depending critically upon the preparation conditions. Raman scattering spectroscopy suggests that stoichiometric GeO2-GeS2 glasses have a heterogeneous structure in the scale of 1-100 nm. The optical gaps are nearly constant at 3.0-3.5 eV for glasses with 0 ? x ? 80 mol% and abruptly increase to ∼6 eV in GeO2. This dependence suggests that the optical gap is governed by GeS2 clusters, which are isolated and/or percolated. Composition-deviated glasses appear as orange and brown, and these glasses seem to have more inhomogeneous structures.  相似文献   

12.
13.
Refractory bulk metallic glasses and bulk metallic glass composites are formed in quaternary Ni-Nb-Ta-Sn alloy system. Alloys of composition Ni60(Nb100−xTax)34Sn6 (x = 20, 40, 60, 80) alloys were prepared by injection-casting the molten alloys into copper molds. Glassy alloys are formed in the thickness of half mm strips. With thicker strips (e.g., 1 mm), Nb2O5 and Ni3Sn phases and the amorphous phase form an in situ composite. Glass transition temperatures, crystallization temperatures, and ΔTx, defined as Tx1 − Tg (Tx1: first crystallization temperature, Tg: glass transition temperature) of the alloys increase dramatically with increasing Ta contents. These refractory bulk amorphous alloys exhibit high Young’s modulus (155-170 GPa), shear modulus (56-63 GPa), and estimated yield strength (3-3.6 GPa).  相似文献   

14.
Iron redox equilibrium, structure and properties were investigated for the 10ZnO-30Fe2O3-60P2O5 (mol%) glasses melted at different temperatures. The structure and valence states of the iron ions in these glasses were investigated using Mössbauer spectroscopy, Raman spectroscopy and differential thermal analysis. Mössbauer spectroscopy indicated that the concentration of Fe2+ ions increased in the 10ZnO-30Fe2O3-60P2O5 (mol%) glass with increasing melting temperature. The Fe2+/(Fe2+ + Fe3+) ratio increased from 0.18 to 0.38 as the melting temperature increased from 1100 to 1300 °C. The measured isomer shifts showed that both Fe2+ and Fe3+ ions are in octahedral coordination. It was shown that the dc conductivity strongly depended on Fe2+/(Fe2+ + Fe3+) ratio in glasses. The dc conductivity increases with the increasing Fe2+ ion content in these glasses. The conductivity arises from the polaron hopping between Fe2+ and Fe3+ ions which suggests that the conduction is electronic in nature in zinc iron phosphate glasses.  相似文献   

15.
As part of ongoing studies to evaluate relationships between structure and rates of dissolution of silicate glasses in aqueous media, sodium borosilicate glasses of composition Na2O·xB2O3·(3 − x)SiO2, with x ≤ 1 (Na2O/B2O3 ratio ≥ 1), were analyzed using deep-UV Raman spectroscopy. Results were quantified in terms of the fraction of SiO4 tetrahedra with one non-bridging oxygen (Q3) and then correlated with Na2O and B2O3 content. The Q3 fraction was found to increase with increasing Na2O content, in agreement with studies on related glasses, and, as long as the value of x was not too high, this contributed to higher rates of dissolution in single pass flow-through testing. In contrast, dissolution rates were less strongly determined by the Q3 fraction when the value of x was near unity, and appeared to grow larger upon further reduction of the Q3 fraction. Results were interpreted to indicate the increasingly important role of network hydrolysis in the glass dissolution mechanism as the BO4 tetrahedron replaces the Q3 unit as the charge-compensating structure for Na+ ions. Finally, the use of deep-UV Raman spectroscopy was found to be advantageous in studying finely powdered glasses in cases where visible Raman spectroscopy suffered from weak Raman scattering and fluorescence interference.  相似文献   

16.
The effect of the variation in phosphate (P2O5) content on the structure of two series of bioactive glasses in the quaternary system SiO2-Na2O-CaO-P2O5 was studied. The first series (I) was a simple substitution of P2O5 for SiO2 keeping the Na2O:CaO ratio fixed (1.00:0.87). The second series was designed to ensure charge neutrality in the orthophosphate , therefore as P2O5 was added the Na2O and CaO content was varied to provide sufficient Na+ and Ca2+ cations to charge balance the orthophosphate present. The glass network connectivity (NC) was calculated for each glass and a modification for the presence of a separate P2O5 phase was included (NC′). 31P and 29Si magic-angle-spinning nuclear magnetic resonance (MAS-NMR) spectroscopy was performed on glass series I and II to determine the structural units present and their relation to glass properties. 31P MAS-NMR spectra of series I resulted in a broad resonance around 9 ppm corresponding to orthophosphate in an amorphous environment. The 9.25 mol% P2O5 glass shown to be partially crystalline by X-ray diffraction was heat treated, and the 31P MAS-NMR spectrum showed a sharp peak around 3 ppm corresponding to calcium orthophosphate or sodium pyrophosphate and overlapping broader peaks at 8.5, 10.5 and 14 ppm possibly corresponding to two mixed calcium-sodium orthophosphate phases and amorphous sodium orthophosphate respectively. 31P MAS-NMR spectra of series II resulted in a broad resonance around 10.5 ppm corresponding to orthophosphate in an amorphous environment. 29Si MAS-NMR spectra of glasses from series I showed a shift in the resonance peak from around −78 to −86 ppm indicating an increase in Q3 species in the glass and a reduction in Q2 with phosphate addition confirming the presence of orthophosphate. The heat treated sample showed a sharp 29Si-NMR resonance at −88 ppm, indicating a crystalline Q2 six-membered combeite (Na2O · 2CaO · 3SiO2) silicate-type phase, which was confirmed by powder X-ray diffraction. 29Si MAS-NMR spectra of glasses from series II showed no shift in the resonance at around −78 ppm across the series, confirming an orthophosphate environment.  相似文献   

17.
The effect of the variation in phosphate (P2O5) content on the properties of two series of bioactive glasses in the quaternary system SiO2-Na2O-CaO-P2O5 was studied. The first series (I) was a simple substitution of P2O5 for SiO2 keeping the Na2O:CaO ratio fixed (1:0.87). The second series (II) was designed to ensure charge neutrality in the orthophosphate (), therefore as P2O5 was added the Na2O and CaO content was varied to provide sufficient Na+ and Ca2+ cations to charge balance the orthophosphate present. Network connectivity’s of the glasses were calculated, and densities and thermal expansion coefficients predicted using the Appen and Doweidar models, respectively. Theoretical densities were measured using the Archimedes principle. Characteristic temperatures, namely the glass transition temperature, Tg, and crystallization temperatures, Tx, were obtained using differential analysis (DTA). Two crystallization exotherms were observed for both glass series (Txi and Txii). Both Tg and Tx decreased with P2O5 addition for both series. The working range of the glasses, Tx-Tg was shown to increase to a maximum at around 4 mol% P2O5 then decrease at higher P2O5 contents for both series. Thermal expansion coefficients were measured using dilatometry increasing with P2O5 addition and showed good agreement with the Appen values. Dilatometric softening points, Ts, were also measured, which increased with P2O5 addition. X-ray diffraction (XRD) was performed on the glasses to confirm their amorphous nature. The glass containing 9.25 mol% P2O5 from series I exhibited well-defined peaks on the XRD trace, indicating the presence of a crystalline phase.  相似文献   

18.
The local structure of Ge and Ga ions in (1 − x)(Ge0.25Ga0.10S0.65)-xCsBr glasses (x = 0.00, 0.05, 0.10 and 0.12) were investigated using extended X-ray absorption fine structure (EXAFS) spectroscopy. CsBr formed [GaS3/2Br] structural units in glass while Ge ions remained in GeS4/2 tetrahedra, unaffected by CsBr addition. Rare-earth ions can be surrounded by Br ions only when CsBr/Ga ratio in glass became larger than unity.  相似文献   

19.
Four glasses of the SiO2-GeO2 binary system have been synthesized via a sol-gel route followed by a heat treatment and a quench. Glass structure has been determined by Ge K-edge X-ray absorption spectroscopy (XAS) at low temperature and Raman spectroscopy. These mixed glasses present a continuous random network of interconnected GeO4 and SiO4 tetrahedra, with GeO4 tetrahedra similar to the GeO4 units in GeO2 glass and continuous compositional variations from GeO2-rich regions to SiO2-rich regions. Such a random mixture is consistent with physical properties of these binary glasses as well as with the chemical dependence of their polyamorphism at high pressure. This EXAFS-derived mean Ge-O-Si angles are close to the Ge-O-Ge mean angle in GeO2 glass, 134° and 130°, respectively. This misfit with the Si-O-Si angles might explain the ease of formation of isolated and pair defects centers, which are suspected to be at the origin of photo-induced modifications of optical properties in Ge-bearing SiO2 glasses.  相似文献   

20.
Tae Hoon Lee 《Journal of Non》2008,354(27):3107-3112
The formation of structural units in Ge-Ga-S glass with CsBr addition and its effect on the optical band gap and several spectroscopic properties of Ho3+ were investigated. The optical band gap of the host glasses and the oscillator strengths of Ho3+ absorption decreased sharply when the ratio of CsBr/Ga became close to unity. These property changes were associated with the formation of structural units of [GaS3/2Br] and they have a crucial effect on the changes of the local structure around Ho3+ ions. The local structure was not sensitive to the As or Br addition but was critically dependent on the concentration of CsBr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号