首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 479 毫秒
1.
In this paper numerical results on the impurity segregation in directional solidified multi-crystalline silicon are presented and compared with experimental results. A solute transport model has been established to predict the final segregation pattern of impurities in the ingot. The segregation is analyzed experimentally on the basis of Fourier transform infrared (FTIR) spectroscopy and glow-discharge mass spectrometry (GDMS). Precipitates were located by IR-transmission microscopy (IRM). Qualitative agreement between simulation and experiment is found. It is demonstrated how the flow pattern can influence the final solute distribution. The simulation also shows that the solubility limit of carbon and nitrogen is reached locally in the ingot and SiC and Si3N4 precipitates are likely to form.  相似文献   

2.
The segregation of Ga during the growth of Czochralski-Si crystals with Ge codoping was investigated. The effective segregation coefficient of Ga in Ga/Ge-codoped Si crystal growth was nearly constant over a wide Ge concentration range, even at high Ge concentrations of about 1021 cm−3. In contrast, the effective segregation coefficient increased at high B concentrations in Ga/B-codoped CZ-Si crystal growth. The segregation behavior of Ga in Ga/Ge- and Ga/B-codoped CZ-Si crystal growth was theoretically compared. The difference in the segregation coefficients of Ga as a function of the codoped impurity (Ge or B) between the two Si crystals was attributed to a difference in the excess enthalpy due to impurity incorporation into the Si crystal between Ga–Ge pairs and Ga–B pairs  相似文献   

3.
The microstructure of P-doped ZnO films grown on the c-plane sapphire substrate by pulsed laser deposition (PLD) was investigated. ZnO films were highly textured along c-axis with two different in-plane orientations. The textured domain was surrounded by the threading dislocations, resulting in the formation of low-angle grain boundary. It was found that the degree of texture and crystalline quality of P-doped ZnO films decreased with increasing the phosphorus atomic percent. For the microstrain study, X-ray diffraction line profile analysis (LPA) was performed. The 0.5 at% P-doped ZnO film showed much higher microstrain than the 1.0 at% P-doped ZnO film as well as as-grown film, which indicated that the phosphorus in former film was effectively incorporated into ZnO film. X-ray photoelectron spectroscopy (XPS) results showed that the phosphorus in 1.0 at% P-doped ZnO film tended towards segregation, which was well consistent with XRD results.  相似文献   

4.
The objective of this work is to determine the nucleation and growth kinetics of (R,S)-mandelic acid ((R,S)-MA) and (R)-mandelic acid ((R)-MA) in aqueous solutions using an unseeded cooling crystallization process. To obtain the nucleation and growth kinetics, the solubility, metastable zone limits, and supersaturation were measured by in-situ attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and focused beam reflectance measurement (FBRM). The nucleation rate and growth rate parameters were determined by a nonlinear optimization algorithm. The effects of initial concentration and cooling rate on supersaturation and the nucleation rate are also discussed.  相似文献   

5.
The gel to glass transition: Chemical and microstructural evolution   总被引:1,自引:0,他引:1  
Peter F. James 《Journal of Non》1988,100(1-3):93-114
The chemical and microstructural changes occurring in the conversion of a died gel to fully dense glass are reviewed. The main emphasis is on gels prepared from alkoxide precursors, including silica and more complex silicate compositions. The gel to glass conversion in these systems is contrasted with that in colloidal systems. The processes occurring in the conversion are crucially dependent on the composition of the starting solution and the chemistry of the sol to gel transformation. Shrinkage is governed by four processes operating at different stages during the gel to glass transition: capillary contraction, condensation-polymerization, structural relaxation and viscous sintering. A variety of techniques have recently been applied to study the changes in the porous gel as a result of heat treatment, including dilatometry, gas adsorption, DTA, TGA, TEM, infra-red spectroscopy (to monitor OH content, in particular), Raman spectroscopy, resonance techniques and SAXS. The conversion of dried gels into monolithic glass samples using the slow drying and firing method is discussed, including removal of hydroxyl content and prevention of bloating. Other processing routes are also briefly reviewed including hypercritical drying and sintering, the use of drying control additives prior to sintering, and colloidal techniques.  相似文献   

6.
Coumarin 1 (C1) dye is impregnated in transparent sol-gel glass samples prepared by sol-gel process using three methods - (I) using HCl as catalyst and glycerol as a drying control chemical additive (DCCA), (II) using HCl as catalyst at 60 °C subsequent drying at room temperature, and (III) using HCl as catalyst at 60 °C and heated at 600 °C for 3 h. The sol-gel matrices prepared by Methods I and II are given dip treatment with methanol/distilled water (50/50 volume) for 16 h before dipping into dye solution. The effect of method and drying time of matrix on spectroscopic properties of C1 dye doped glass samples has been studied. The optical density (OD) at absorption maximum wavelength and fluorescence intensity (FI) at fluorescence maximum wavelength of all C1 dye doped samples prepared by Methods I and II decrease, where as there is no change in photophysical properties (OD/FI) is observed in samples prepared by Method III with the time of drying of the sol-gel samples. These absorption/fluorescence properties of C1 dye in sol-gel glass matrices are compared with its respective properties in methanolic solution in acidic environment.  相似文献   

7.
Thin nanostructured chalcogenide films were grown using the oblique angle deposition (OAD) technique and subsequently polymerized with thin poly(amino-p-xylylene) (PPX) films. Our objective was twofold, i.e., to use deposited polymeric thin films to allow the attachment of biomolecules to chalcogenide glass thin films, and at the same time, to increase surface area by OAD to enhance surface functionality. The effectiveness of this approach was evaluated by Fourier transform infrared spectroscopy (FTIR), together with a combination of fluorescent protein immobilization and confocal microscopy characterization. It is shown that the presence of amine groups on the surface of the polymer coated chalcogenide thin films yield a notable increment of surface coverage with proteins at large evaporation oblique angles which is expected to enhance detection performance of the film in biosensor applications.  相似文献   

8.
A study of the nucleation kinetics for a cooling crystallisation of paracetamol–ethanol solutions in a batch reactor is described in this paper. Metastable zone width (MSZW) experiments were conducted in order to estimate the nucleation kinetics of the system. Measured MSZWs can be affected by numerous process parameters, such as cooling rate, concentration, agitation rate, and working volume. Two theoretical approaches were employed to estimate the nucleation kinetics, the classical mass based approach of Nývlt, and a more recent approach by Kubota, which also considers number density. Both approaches were found to produce similar estimates for the nucleation rates of the paracetamol–ethanol solutions as a function of supersaturation for an assumed nucleus size of 10 μm. The theory of Kubota was found to predict satisfactory estimates for the induction time of the nucleation process from MSZW data. The induction time was observed to be independent of the solution temperature as suggested by Kubota’s theory. This is a novel finding and serves to validate the induction time theory of Kubota. In this investigation, MSZWs were observed to decrease with increased levels of agitation and found to be independent of working volume.  相似文献   

9.
The effect of thermal activation on NiW/Al2O3 catalyst in their oxide, reduced and sulfided forms has been studied by X-ray diffraction (XRD), differential thermal analysis (DTA), diffusion reflectance spectroscopy (DTS), infrared spectroscopy (IR), Raman spectroscopy (RS), electron paramagnetic resonance (EPR) and magnetic susceptibility measurements. Thermal activation in oxygen results in production of many species of the mono-, di-, and polymeric type. Upon activation in hydrogen they are partially reduced, whereas upon sulfiding number of oxide ions are replaced by sulfide ones. Among others, formation of dithiotungstenates was proved, yet neither the exchange of hydroxyl groups for the thiol ones nor the exchange of bridge oxide ions for sulphur ions was indicated. The simultanous reduction and sulfiding process do not affect the spinel subsurface structure. With respect to the surface species, the catalyst's support takes on a stabilizing function.  相似文献   

10.
A heteroleptic titanium metal alkoxide (OPy)2Ti(4MP)2, where OPy = NC5H4(CH2O)-2 and 4MP = OC6H4(SH)-4, was investigated as a candidate precursor for the solution-based (sol-gel) synthesis of titanium oxide via the photoactivation of intermolecular linking reactions (e.g., hydrolysis/condensation). The evolution of the electronic structure of the solution-based molecule arising from conventional (dark) chemical reaction kinetics was compared with that of samples exposed to ultraviolet (UV) radiation at wavelengths of λ = 337.1 nm and 405 nm using UV-visible absorption spectroscopy. Photoinduced changes in the spectra were examined as a function of both the incident wavelength of exposure and the total fluence. Experimental results confirm the UV-induced modification of spectral absorption features, attributed to ligand-localized and charge transfer transitions accompanied by structural changes associated with hydrolysis and condensation. The photoenhancement of reaction kinetics in these processes was confirmed by the increased modification of the absorption features in the solution spectra, which saturated more rapidly under UV-illumination than under dark conditions. Similar saturation behaviors were observed for both the 337.1 nm and the 405 nm incident wavelengths with the same total deposited energy density indicating a relative insensitivity of the photoinduced response to excitation energy for the wavelengths and fluences studied.  相似文献   

11.
In the present investigation the morphological study of self-supported translucent films, constituted of semi-inorganic polymeric materials prepared by sol–gel process from poly(phenylsilsesquioxane) (PPSQ) and poly(dimethylsiloxane) (PDMS), modified by diphenylsilanediol (DPS), phenyltriethoxysilane (PTES) and/or tetraethoxysilane (TEOS), is reported. Small-angle X-ray scattering evidenced phase segregation between PPSQ and PDMS in the PPSQ/PDMS film (M1). The addition of TEOS to the sol, constituted by PPSQ and PDMS, led to morphological changes, characterized by nanoparticles of PPSQ and/or SiO2 embedded in the PDMS-rich matrix. On its course, the use of diphenylsilanediol and phenyltriethoxysilane mixture, as an additive, led to more homogeneous films in comparison to PPSQ/PDMS.  相似文献   

12.
For vertical Bridgman growth of the nonlinear optical material GaSe in an ampoule sufficiently long that flow and dopant transport are not significantly influenced by the upper free surface, we show computationally that steady rotation about the ampoule axis strongly affects the flow and radial solid-phase dopant segregation. Radial segregation depends strongly on both growth rate U and rotation rate Ω over the ranges 0.25 μms−1U3.0 μms−1 and 0Ω270 rpm. For each growth rate considered, the overall radial segregation passes through two local maxima as Ω increases, before ultimately decreasing at large Ω. Rotation has only modest effects on interface deflection. Radial segregation computed using a model with isotropic conductivity (one-third the trace of the conductivity tensor) predicts much less radial segregation than the “correct” model using the anisotropic conductivity, with the segregation decreasing monotonically with Ω. Consideration of a model in which centrifugal acceleration is deliberately omitted shows that, as Ω increases, diminution and ultimately disappearance of the “secondary” vortex lying immediately above the interface is due to centrifugal buoyancy, while axial distension of the larger “primary” vortex above is due to Coriolis effects. These results, which are qualitatively different from those accounting for centrifugal buoyancy, suggest that several earlier computational and analytical predictions of rotating vertical Bridgman growth are either limited to rotation rates sufficiently low that centrifugal buoyancy is unimportant, or are artifacts associated with its neglect. The overall radial segregation depends approximately linearly on the product of and the growth rate U for the conditions considered, where is the segregation coefficient.  相似文献   

13.
Lijun Dai 《Journal of Non》2008,354(17):1845-1854
Amorphous calcium carbonate (ACC) has been of keen interest in the biomimetics field because of recent evidence which suggests it plays an important role in biomineralization. In this report, an in vitro model system is used to examine the composition of an amorphous phase generated by polyanionic process-directing agents, such as the sodium salt of polyaspartic acid (Pasp), which is considered a simple mimic to the proteins associated with calcific biominerals. This additive leads to the formation of a highly hydrated, amorphous mineral precursor to calcium carbonate (CaCO3), referred to as a polymer-induced liquid-precursor (PILP) phase. The precursor phase was collected by centrifugation, and the quantity of precursor phase and the water content were determined. It was found that Pasp promotes and stabilizes the amorphous precursor, which has a composition that steadily changes with time as the polymer and water are excluded. Elemental analysis was used to investigate the role of the polymer in influencing the calcium/carbonate ratio, the water content, and the amount of precursor phase. Raman and ATR-FTIR spectroscopy were used to compare the compositions of the precursor phases generated with different polymeric concentrations. The role of Pasp in generating and stabilizing the ACC precursor phase is discussed.  相似文献   

14.
The photoinduced potential discharge kinetics of double-layer photoreceptors containing a polymeric charge-transport layer and a charge-generating layer of amorphous selenium have been investigated as a function of the electric field and the photoinjected charge density. Under space-charge-limited conditions, the discharge kinetics agree with existing theories and can be explained on the basis of a field-dependent drift mobility. For partial injection, the discharge is characteristics of dispersive transport and cannot be described by conventional discharge theory. Under these conditions, transit times of the trailing edge of the photoinjected charge cannot be detected and the rate of potential discharge is determined by the field dependence of the drift mobility. The effects of the electric field and variations of the field dependence of the drift mobility are presented and discussed.  相似文献   

15.
The thermodynamics of CdSe quantum dots embedded in a glass matrix is of great interest because of the numerous applications as optical materials. In this study, the energetics and stability of CdSe quantum dots in a borosilicate glass matrix is investigated as a function of size using high-temperature oxide melt solution calorimetry. CdS0.1Se0.9 nanoparticles (1-40 nm) embedded in glass were analyzed by photoluminescence spectroscopy, electron microprobe, X-ray fluorescence, high-energy synchrotron X-ray diffraction, and (scanning) transmission electron microscopy using both electron energy loss and energy dispersive X-ray spectroscopy. As CdSe particles coarsen, their heat of formation becomes more exothermic. The interfacial energy of CdSe QDs embedded in a borosilicate glass, determined from the slope of enthalpy of drop solution versus calculated surface area, is 0.56 ± 0.01 J/m2.  相似文献   

16.
We have investigated the complex behaviour of boron (B) redistribution process via silicon thin bi‐layers interface. It concerns the instantaneous kinetics of B transfer, trapping, clustering and segregation during the thermal B activation annealing. The used silicon bi‐layers have been obtained by low pressure chemical vapor deposition (LPCVD) method at 480 °C, by using in‐situ nitrogen‐doped‐silicon (NiDoS) layer and strongly B doped polycrystalline‐silicon (P+) layer. To avoid long‐range B redistributions, thermal annealing was carried out at relatively low‐temperatures (600 °C and 700 °C) for various times ranging between 30 min and 2 h. To investigate the experimental secondary ion mass spectroscopy (SIMS) doping profiles, a redistribution model well adapted to the particular structure of two thin layers and to the effects of strong‐concentrations has been established. The good adjustment of the simulated profiles with the experimental SIMS profiles allowed a fundamental understanding about the instantaneous physical phenomena giving and disturbing the complex B redistribution profiles‐shoulders. The increasing kinetics of the B peak concentration near the bi‐layers interface is well reproduced by the established model.  相似文献   

17.
We report the details of the construction and calibration of a sensitive surface rheometer, inspired by an instrument described in the literature, adapted to the study of photosensitive polymeric materials. By high resolution video tracking of the motion of a floating magnetized needle we are able to measure the viscoelastic complex shear modulus G of a Langmuir monolayer with an accuracy of 5*10− 6 N/m. This instrument is then employed for the rheological characterization of a Langmuir monolayer of a photosensitive azobenzene polymer, which can be brought out of equilibrium by a suitable photoperturbation. The shear modulus is measured as a function of temperature, illumination power and wavelength. The reversible rheological changes induced in the film by photo-perturbation are monitored during time, observing a transition from a predominantly elastic (G mainly real) to a viscoelastic regime (real and imaginary parts of G comparable). These results are confirmed by a comparison with independent measurements performed using other rheological techniques. Finally a discussion is made, taking into account the results of a recent X-ray photon correlation spectroscopy (XPCS) experiment on the same polymer in equilibrium and out of equilibrium.  相似文献   

18.
An unusual behavior of the growth kinetics and the segregation of Si during current-controlled LPE of GaAs is reported. The growth velocity (for a fiven current density) decreased by about two orders of magnitude from a value higher to a value smaller than that found in undoped solutions as the growth temperature decreased from 975 to 850°C; at 825°C dissolution of the substrate took place and a reversed current polarity was required for growth. At the same temperature range the growth velocity from undoped solutions decreased by a factor of only 3. Similarly, a two orders of magnitude decrease of the silicon segregation coefficient was observed for the same temperature change compared to changes by a factor or two in the thermally grown layers. For a given growth temperature (900°C) a change in conductivity from p- to n-type took place in the grown layers as the current density was increased. These findings were accounted for with a qualitative model based on the presence in the solution of different charged complexes containing silicon with different electromigrating characteristics. According to this model, the behavior of Si as p- and as n-type dopant (amphoteric dopant) in GaAs is related to the existence in the solution of the different charged complexes containing silicon.  相似文献   

19.
Redistribution behavior of magnesium (Mg) in the N-terminated (1 1¯ 0 1) gallium nitride (GaN) has been investigated. A nominally undoped GaN layer was grown on a heavily Mg-doped GaN template by metalorganic vapor-phase epitaxy (MOVPE). Mg dopant profiles were measured by secondary ion mass spectrometry (SIMS) analysis. A slow decay of the Mg concentration was observed in the nominally undoped GaN layer due to the surface segregation. The calculated decay lengths of the (1 1¯ 0 1) GaN are ∼75–85 nm/decade. These values are shorter than the decay length determined in the sample grown on the Ga-terminated (0 0 0 1) GaN. This result indicates that Mg exhibited weak surface segregation in the (1 1¯ 0 1) GaN as compared to the (0 0 0 1) GaN. The weak surface segregation is in agreement with the high efficiency of Mg incorporation on the (1 1¯ 0 1) face. The high density of hydrogen was obtained in the (1 1¯ 0 1) GaN, which might enhance the Mg incorporation.  相似文献   

20.
We report on the effect of BaO on the crystallization kinetics of glasses in the diopside (CaMgSi2O6)-Ca-Tschermak (CaAl2SiO6) system. Partial substitution (i.e. 5%, 10% and 20%) of Ba2+ for Ca2+ was attempted in composition CaMg0.8Al0.4Si1.8O6, in three different glasses while partial substitution of B3+ for Al3+ was made in the fourth glass. Structural investigations on the glasses have been made by density measurements, molar volume and Infra-red spectroscopy (FTIR). Non-isothermal crystallization kinetic studies have been employed to study the mechanism of crystallization in all the four glasses. The Avrami parameter for the glass powders is ∼2, indicating the existence of intermediate mechanism of crystallization. Crystallization sequence in the glasses has been followed by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and FTIR. Augite crystallized out being the dominant phase in all the glass-ceramics, while different polymorphs of BaAl2Si2O8 were present as secondary or minor phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号