首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystallization behavior and microstructure development of the Zr61Al7.5Cu17.5Ni10Si4 alloy during annealing were investigated by isothermal differential scanning calorimetry, X-ray diffractometry and transmission electron microscopy. During isothermal annealing of the Zr61Al7.5Cu17.5Ni10Si4 alloy at 703 K, Zr2Cu crystals with an average size of about 5 nm were first observed during the early stages (30% crystallization) of crystallization by TEM. The Zr2Cu crystal size increased with annealing time and attained an average size of 20 nm corresponding to the stage of 80% crystallization. In addition, the change in particle size with increasing annealing time exhibited a linear relationship between grain growth time and the cube of the particle size for the Zr2Cu type crystalline phase. This indicates that the crystal growth of the Zr61Al7.5Cu17.5Ni10Si4 alloy belongs to a thermal activated process of the Arrhenius type. The activation energy for the grain growth of Zr2Cu is 155 ± 20 kJ/mol in the Zr61Al7.5Cu17.5Ni10Si4 amorphous alloy. The lower activation energy for grain growth in compared to that for crystallization in Zr65Cu35 440 kJ/mol crystal corresponds to the rearrangement of smaller atoms in the metallic glass, Al or Si (compare to Zr).  相似文献   

2.
K.T. Liu 《Journal of Non》2008,354(27):3159-3165
The crystallization kinetics in Ni45.6Ti49.3Al5.1 film were studied by differential scanning calorimetry through isothermal and non-isothermal approaches. The activation energy for crystallization was determined to be 374 and 280 kJ/mol by the Kissinger and the Augis & Bennett method, respectively, in non-isothermal methods. In the isothermal annealing study, the Avrami exponents were in the range of 2.78-3.80 between 793 and 823 K, suggesting that the isothermal annealing was governed by three dimensional diffusion-controlled growth for Ni45.6Ti49.3Al5.1 thin films, in which the activation energy of nucleation is higher than that of growth. In addition, the transformation rate curves of Ni45.6Ti49.3Al5.1 film were also constructed by isothermal methods. The crystallization kinetics of amorphous Ni45.6Ti49.3Al5.1 film can thus be appreciated and the transformation rate also can be employed to control the degree of crystallization.  相似文献   

3.
T. Mika  G. Haneczok  E. ?agiewka 《Journal of Non》2008,354(27):3099-3106
Crystallization of amorphous Al-based alloys (Al-Y-Gd-Ni-Fe) was investigated by applying differential scanning calorimetry (DSC), X-ray diffraction (XRD) and high resolution electron microscopy (HREM). It was shown that the crystallization in the examined alloys proceeds in three stages (DSC maxima). The two first stages are attributed to formation of solid solution of fcc Al(RE) nanograins in amorphous matrix. In the third stage the precipitation of ternary compound Al19Ni5RE3 of the orthorhombic Al19Ni5Gd3-type structure was observed. A partial substitution of Ni by Fe causes a change of stoichiometry and crystal structure of the ternary compounds: Al8TM4RE (TM = Fe, Ni; RE = Y, Gd) of the tetragonal ThMn12 (Al8Mn4Ce)-type structure. A partial replacing of Y atoms by Gd in the Al87Y5Ni8 based alloy shifts the Al(RE) nanocrystallization to lower temperatures. In contrast to this a partial replacing of Ni by Fe shifts the nanocrystallization to higher temperatures.  相似文献   

4.
Sheng-Bao Qiu 《Journal of Non》2008,354(29):3520-3524
The crystallization behavior of Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass (Vit1 BMG) under the action of high-density pulsing current (HDPC) have been studied experimentally. It has been found that high-density pulsing current can directly induce the rapid nanocrystallization of Vit1 BMG. The multiple crystallization processes of Vit1 BMG induced by HDPC have been confirmed as Amorphous → Amorphous + i-phase → Be2Zr + Zr2Cu + Ni7Zr2 + FCC phase + other phases → Zr2Cu + Ni7Zr2 + FCC phase + other phases. By comparing to the crystallization behavior of Vit1 BMG induced by isothermal annealing, the crystallization temperature is reduced and crystallizing process is significantly shortened, while the sequence of crystallization process in both cases is basically same. The present results show that the HDPC has significantly influenced the crystallizing kinetics of Vit1 BMG due to that it can greatly promote the movement and rearrangement of atoms, which will result in a rapid nanocrystallization. It suggests that HDPC treatment can be an effective way to induce the rapid nanocrystallization of BMGs.  相似文献   

5.
This paper investigates the effect of milling atmospheres on mechanical crystallization of an amorphous Fe78Si9B13 alloy during ball milling. Under an air atmosphere, the amorphous alloy completely transforms into a single α-Fe(Si) phase after milling of 30 h. The crystallization process and products are different from those of thermal crystallization and milling induced crystallization under an argon atmosphere. Moreover, the milling atmosphere has a significant influence on the thermal crystallization of the amorphous phase in the as-milled alloy.  相似文献   

6.
The influence of outphase Cu50Ti50 amorphous alloy addition on microstructural evolution of Zr66.7Ni33.3 amorphous alloy has been investigated using a mechanical alloying method. It has been found that the milling induced microstructural evolution is related to the change of peak positions of the first maximum on X-ray diffraction patterns of the as-obtained amorphous alloys. With increasing milling time, the 3 wt.% Cu50Ti50 addition can give rise to the cyclic amorphization transformation of the as-milled alloy. The mechanical stability of the mixing amorphous phase can be greatly enhanced with increasing Cu50Ti50 addition up to 10 wt.%. Moreover, the addition of outphase Cu50Ti50 amorphous alloy not only increases the onset crystallization temperature of Zr66.7Ni33.3 amorphous alloy but also alters its crystallization mode. The effect of outphase amorphous addition on the mechanical stability of the Zr66.7Ni33.3 amorphous phase has been discussed based upon the bond order theory.  相似文献   

7.
J.C. Qiao 《Journal of Non》2011,357(14):2590-2594
Crystallization transformation kinetics in isothermal and non-isothermal (continuous heating) modes were investigated in Cu46Zr45Al7Y2 bulk metallic glass by differential scanning calorimetry (DSC). In isochronal heating process, activation energy for crystallization at different crystallized volume fraction is analyzed by Kissinger method. Average value for crystallization in Cu46Zr45Al7Y2 bulk metallic glass is 361 kJ/mol in isochronal process. Isothermal transformation kinetics was described by the Johnson-Mehl-Avrami (JMA) model. Avrami exponent n ranges from 2.4 to 2.8. The average value, around 2.5, indicates that crystallization mechanism is mainly three-dimensional diffusion-controlled. Activation energy is 484 kJ/mol in isothermal transformation for Cu46Zr45Al7Y2 bulk metallic glass. These different results were discussed using kinetic models. In addition, average activation energy of Cu46Zr45Al7Y2 bulk metallic glass calculated using Arrhenius equation is larger than the value calculated by the Kissinger method in non-isothermal conditions. The reason lies in the nucleation determinant in the non-isothermal mode, since crystallization begins at low temperature. Moreover, both nucleation and growth are involved with the same significance during isothermal crystallization. Therefore, the energy barrier in isothermal annealing mode is higher than that of isochronal conditions.  相似文献   

8.
9.
D. Roy  H. Raghuvanshi 《Journal of Non》2011,357(7):1701-1704
The crystallization behavior and thermal stability of amorphous phases of Al65Cu20Ti15 alloy obtained by mechanical alloying were investigated by using in-situ X-ray diffraction and differential scanning calorimetry (DSC) under non isothermal and isothermal conditions. The result of a Kissinger analysis shows that the activation energy for crystallization is 1131 kJ/mol. The higher stability against crystallization of Al65Cu20Ti15 amorphous alloy is attributed to the stronger interaction of atoms in the Al-Cu-Ti system and formed of complicated compound like Al5CuTi2 and Al4Cu9 as primary phases. The isothermal crystallization was modeled by using the Johnson-Mehl-Avrami (JMA) equation. The Avarami exponents suggest that the isothermal crystallization is governed by a three-dimensional diffusion-controlled growth.  相似文献   

10.
Isochronal crystallization kinetics of Cu60Zr20Ti20 bulk metallic glass has been investigated by differential scanning calorimetry. By means of the Kissinger, Ozawa, Kempen, Matusita and Gao methods, average effective activation energies for the first and second crystallization reactions in Cu60Zr20Ti20 are calculated to be about 375 ± 9 and 312 ± 11 kJ mol−1, respectively, which are smaller than the values deduced from isothermal experiments. Meanwhile, average Avrami exponents, 3.0 ± 0.1 and 3.4 ± 0.2, for two crystallization reactions in isochronal anneals, differ from the value about 2.0 in isothermal anneals. The nonidentity of the Avrami exponents and effective activation energies may be contributed to different crystallization mechanisms and the nature of non-isokinetic between isochronal and isothermal experiments. The values of frequency factor k0 for the first and second crystallization reactions of Cu60Zr20Ti20 are (1.7 ± 0.3) × 1024 and (7.0 ± 0.8) × 1018 s−1, respectively, and the large value of k0 has been discussed in terms of the atomic configuration and interaction.  相似文献   

11.
T. Hirata 《Journal of Non》1980,41(2):225-240
The crystallization behaviour of an amorphous Ti50Be40Zr10 alloy during a continuous heating mode from room temperature to 973 K and isothermal annealing at temperatures above the glass transition temperature is examined by differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS) measurement and large-angle X-ray diffractometry (LAXD). DSC indicated two well-defined exothermic peaks, a slight shoulder at the higher temperature side of the second peak and a small heat evolution at higher temperature. The Kissinger plot for the first and the second peak gives a straight line, from which the apparent activation energy is estimated to be 269 and 413 kJ/mol respectively; the enthalpies for the first and second crystallization process are 1.04 kJ/mol and 4.39 kJ/mol for a heating rate of 20 K/min. The SAXS intensities increase sharply after annealing at about 673 K (corresponding to the first peak in the DSC curves); the scattering is due to the formation of fine-scale crystalline Ti particles by the LAXD. The size of the particles does not change significantly while the number of scattering particles increases, indicating that the reaction is almost nucleation controlled and the growth is very limited. Another crystalline phase would appear in addition to the Ti particles on annealing at temperatures above about 753 K (corresponding to the second peak in the DSC curves), where the SAXS intensities decrease compared with those for only the first-stage of crystallization. The crystalline phase might be a metastable cubic phase with the lattice parameter a0?0.2994 nm.The sequence in the crystallization of the initial non-crystalline material is amorphous → microcrystalline (MS I) → crystalline (MS II; S III), although the structure of crystalline phase in the final stage (S III) was not identified. It is also likely that cold-rolling does not have a perceptible effect on the crystallization behaviour of the present amorphous alloy.  相似文献   

12.
Alloys made from mixtures of Al62Cu25.5Fe12.5 icosahedral quasicrystal (IQC) and Al70Co15Ni15 decagonal quasicrystal (DQC) were studied by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The transition from IQC to DQC was thus discussed by studying the evolution of their constituent phases in each alloy. Three approximant phases were found as common phases in most of the pseudo-binary alloys: λ-Al13Fe4, β-AlFe and τ3-Al3Ni2. It is found that, with the increment of the DQC content in the alloy, the λ phase changes from Al13Fe4 to Al13Co4 and the τ3 phase changes from Al3Cu2 to Al3Ni2. The formation of these phases were found also to follow the evolution of their corresponding e/a-constant lines in the Al–(Cu,Ni)–(Fe,Co) pseudo-ternary phase diagram. Under this framework, the roles played by the related approximants in the transition process are briefly discussed.  相似文献   

13.
Refractory bulk metallic glasses and bulk metallic glass composites are formed in quaternary Ni-Nb-Ta-Sn alloy system. Alloys of composition Ni60(Nb100−xTax)34Sn6 (x = 20, 40, 60, 80) alloys were prepared by injection-casting the molten alloys into copper molds. Glassy alloys are formed in the thickness of half mm strips. With thicker strips (e.g., 1 mm), Nb2O5 and Ni3Sn phases and the amorphous phase form an in situ composite. Glass transition temperatures, crystallization temperatures, and ΔTx, defined as Tx1 − Tg (Tx1: first crystallization temperature, Tg: glass transition temperature) of the alloys increase dramatically with increasing Ta contents. These refractory bulk amorphous alloys exhibit high Young’s modulus (155-170 GPa), shear modulus (56-63 GPa), and estimated yield strength (3-3.6 GPa).  相似文献   

14.
Amorphous Mg50Ni50 alloy was produced by mechanical alloying (MA) of the elemental powders Mg and Ni using a SPEX 8000D mill. The alloyed powders were microstructurally characterized by X-ray diffraction (XRD). The thermal transformation of amorphous Mg50Ni50 into stable intermetallics (Mg50Ni50 → remaining amorphous + Mg2Ni → Mg2Ni + MgNi2) was analyzed using the Kissinger and isoconversional methods based on the non-isothermal differential scanning calorimetry (DSC) experiments. The apparent activation energies (Ea) and the transformation diagrams, temperature-time-transformation (T-T-T) and temperature-heating rate-transformation (T-HR-T), were obtained for both processes. A good agreement was observed between the calculated transformation curves and the experimental data, which verifies the reliability of the method utilized.  相似文献   

15.
We have prepared an amorphous Co68Fe4.5Sil2·5B15 alloy, annealed it in the temperature range of 200-580 °C and carried out a detailed study of the effect of crystallization on its magnetic properties. When annealed in an optimized condition, a very high value of initial permeability of the order of ~ 104 has been attained in association with a drastic decrease of the relative loss factor. This change of properties has been attributed due to the formation of nanograins of fcc Co and Co3B, as identified by X-ray diffraction and differential thermal analysis. The activation energy of crystallization is 4.18 eV. Hysteresis loop parameters were then extensively studied for the samples annealed at various temperatures. Finally, a very high value of giant magneto-impedance (GMI)—which is a characteristic property of Co-based amorphous alloys derived from well defined anisotropy axis (around 375) has been observed for a sample annealed at 380 °C.  相似文献   

16.
Potentiodynamic polarization studies were carried out on virgin specimens of Zr-based bulk amorphous alloys Zr46.75Ti8.25Cu7.5Ni10Be27.5 and Zr65Cu17.5Ni10Al7.5, and conventional-type binary amorphous alloys Zr67Ni33 and Ti60Ni40 in solutions of 0.2 M, 0.5 M and 1.0 M HNO3 at room temperature. The values of the corrosion current density (Icorr) for the bulk amorphous alloy Zr46.75Ti8.25Cu7.5Ni10Be27.5 were found to be comparable with those of Zr65Cu17.5Ni10Al7.5 in 0.2 M and 0.5 M HNO3, but the value of Icorr for the former was almost three times more than that of the latter in 1.0 M HNO3. In the case of conventional binary amorphous alloys, Ti60Ni40 showed lower value of Icorr as compared to Zr67Ni33 in 0.5 M and 1.0 M HNO3 and a comparable value of Icorr in 0.2 M HNO3. In general, the binary Ti60Ni40 displayed the best corrosion resistance among all the alloys in all the cases and the corrosion current density (Icorr) for all the alloys was found to increase with the increasing concentration of nitric acid. It is noticed that the bulk amorphous alloys do not possess superior corrosion resistance as compared to conventional binary amorphous alloys in aqueous HNO3 solutions. The observed differences in their corrosion behavior are attributed to different alloy constituents and composition of the alloys investigated.  相似文献   

17.
N. Bayri  H. Gencer  M. Gunes 《Journal of Non》2009,355(1):12-2594
In this study, we have investigated the effect of substituting Mn for Fe on the crystallization kinetics of amorphous Fe73.5−xMnxCu1Nb3Si13.5B9 (x = 1, 3, 5, 7) alloys. The samples were annealed at 550 °C and 600 °C for 1 h under an argon atmosphere. The X-ray diffraction analyses showed only a crystalline peak belonging to the α-Fe(Si) phase, with the grain size ranging from 12.2 nm for x = 0 to 16.7 nm for x = 7. The activation energies of the alloys were calculated using Kissinger, Ozawa and Augis-Bennett models based on differential thermal analysis data. The Avrami exponent n was calculated from the Johnson-Mehl-Avrami equation. The activation energy increased up to x = 3, then decreased with increasing Mn content. The values of the Avrami exponent showed that the crystallization is typical diffusion-controlled three-dimensional growth at a constant nucleation rate.  相似文献   

18.
The influence of Cr2O3 on glass forming characteristics and physical properties of PbO-Fe2O3-P2O5 glasses has been investigated by Raman and Mössbauer spectroscopies, X-ray diffraction analysis (XRD), Differential Thermal Analysis (DTA), Scanning Electron Microscopy (SEM) and impedance spectroscopy. Glasses of the general composition xCr2O3-(28.3-x)PbO-28.7Fe2O3-43.0P2O5, 0 ≤ × ≤ 10, (mol%) were prepared by conventional melt-quenching technique. The compositions containing up to 4 mol% Cr2O3 formed fully amorphous samples and their Raman spectra show systematic increase in the fraction of orthophosphate Q0 units with increasing Cr2O3 content and O/P ratio.On the other hand, compositions containing 8 and 10 mol% Cr2O3 partially crystallized during cooling and annealing to Fe7(PO4)6, Fe2Pb3(PO4)4 and Cr2Pb3(PO4)4. A high tendency for crystallization of these melts is related to the high O/P (> 4) and Fe2+/Fetot (≈ 0.60) ratios.Electrical conductivity of xCr2O3-(28.3-x)PbO-28.7Fe2O3-43.0P2O5, 0 ≤ × ≤ 10, (mol%) compositions is independent of Cr2O3 and controlled entirely by the polaron transfer between Fe2+ and Fe3+ ions.  相似文献   

19.
Bulk glasses of the system Ga20SbxS80−x (x = 5 and 40) were prepared for the first time by the known melt quenching technique. Non-isothermal differential scanning calorimetric (DSC) measurements of as-quenched Ga20SbxS80−x (x = 5 and 40) chalcogenide glasses reveal that the characteristic temperatures e.g. the glass transition temperature (Tg), the temperature corresponding to the maximum crystallization rate (Tp) recorded in the temperature range 400-650 K for x = 5 and 480-660 K for x = 40 are strongly dependent on heating rate and Sb content. Upon heating, these glasses show a single glass transition temperature (Tg) and double crystallization temperatures (Tp1 and Tp2) for x = 5 which overlapped and appear as a single crystallization peak (Tp) for x = 40. The activation energies of crystallization Ec were evaluated by three different methods. The crystallization data were examined in terms of recent analysis developed for non-isothermal conditions. The crystalline phases resulting from (DSC) have been identified using X-ray diffraction.  相似文献   

20.
Two amorphous alloys, Ni35Zr65 and Fe40Ni40P14B6, were irradiated using 400 keV protons at several temperatures below the crystallization temperature, Tx, to peak doses in the neighborhood of 3.5 to 4.5 dpa. Irradiation at 250°C resulted in the crystallization of both alloys, which were examined by transmission electron microscopy of samples electrolytically polished to various distances from the irradiated surface to study the effect of dose. Samples masked from the proton beam remained amorphous during irradiation. In the Ni35Zr65 alloy crystallization of the equilibrium phases propagated throughout the entire sample, while the in the Fe40Ni40P14B6 alloy crystallization was observed only in those parts of the samples lying within the proton range. Neither alloy crystallized during irradiation at 100°C. In both these alloys the amorphous phase is therefore evidently stable at irradiation temperatures below approximately 0.6 Tx. An examination of the literature on irradiation damage of binary alloys and intermetallic compounds suggests that there is a tendency for initially amorphous alloys to remain amorphous at irradiation temperatures, Tirr < 0.3 TL, where TL (≈Tx) is the “melting” temperature (either a eutectic, peritectic or congruent melting temperature). Also, these same alloys, even when they are initially crystalline, transform to the amorphous state during irradiation at T < 0.3 TL. Some other crystalline alloys have also been shown to transform to the amorphous state at Tirr < 0.3 TL even though they have never been prepared in this condition by rapid quenching techniques. The temperature 0.3 TL appears to be a lower limit, however, since the crystalline to amorphous transformation occurs in many of these alloys at temperatures greater than 0.3 TL. It is suggested, by analogy with results on void formation in irradiated metals, that this low temperature limit is related to the low mobility of vacancies in these materials, although the mechanism of crystallization, or conversely amorphization, is not fully understood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号