首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Cyanobacteria must cope with the negative effects of ultraviolet B (280-315 nm) (UV-B) stress caused by their obligatory light requirement for photosynthesis. The adaptation of the cyanobacterium Anabaena sp. to moderate UV-B radiation has been observed after 2 weeks of irradiation, as indicated by decreased oxidative stress, decreased damage, recovered photosynthetic efficiency and increased survival. Oxidative stress in the form of UV-B-induced production of reactive oxygen species was measured in vivo with the oxidative stress-sensitive probe 2',7'-dichlorodihydrofluorescein diacetate. Photooxidative damage by UV-B radiation, including lipid peroxidation and DNA strand breakage, was determined by a modified method using thiobarbituric acid reactive substances and fluorometric analysis of DNA unwinding. Photosynthetic quantum yield was determined by pulse amplitude-modulated fluorometry. The results suggest that moderate UV-B radiation results in an evident oxidative stress, enhanced lipid peroxidation, increased DNA strand breaks, elevated chlorophyll bleaching as well as decreased photosynthetic efficiency and survival during the initial exposure. However, DNA strand breaks, photosynthetic parameters and chlorophyll bleaching returned to their unirradiated levels after 4-7 days of irradiation. Oxidative stress and lipid peroxidation appeared to respond later because decreases were observed after 7 days of radiation. The survival curve against irradiation time exhibited a close relationship with the changes in photosynthetic quantum yield and DNA damage, with little mortality after 4 days. Growth inhibition by UV-B radiation was observed during the first 7 days of radiation, whereas normal growth resumed even under UV-B stress thereafter. An efficient defense system was assumed to come into play to repair photosynthetic and DNA damage and induce the de novo synthesis of UV-sensitive proteins and lipids, allowing the organisms to adapt to UV-B stress successfully and survive as well as grow. No induction of mycosporine-like amino acids (MAA) was observed during the adaptation of Anabaena sp. to UV-B stress in our work. The adaptation of the cyanobacterium correlated with and could be caused by the oxidative stress and oxidative damage.  相似文献   

2.
Mutagenic and carcinogenic UV-B radiation is known to damage DNA mostly through the formation of bipyrimidine photoproducts, including cyclobutane dimers (CPD) and (6-4) photoproducts ((6-4) PP). Using high-performance liquid chromatography coupled to tandem mass spectrometry, we investigated the formation and repair of thymine-thymine (TT) and thymine-cytosine (TC) CPD and (6-4) PP in the DNA of cultured human dermal fibroblasts. A major observation was that the rate of repair of the photoproducts did not depend on the identity of the modified pyrimidines. In addition, removal of CPD was found to significantly decrease with increasing applied UV-B dose, whereas (6-4) PP were efficiently repaired within less than 24 h, irrespective of the dose. As a result, a relatively large amount of CPD remained in the genome 48 h after the irradiation. Because the overall applied doses (<500 J m(-2)) were chosen to induce moderate cytotoxicity, fibroblasts could recover their proliferation capacities after transitory cell cycle arrest, as shown by 5-bromo-2'-deoxyuridine (BrdUrd) incorporation and flow cytometry analysis. It could thus be concluded that UV-B-irradiated cultured primary human fibroblasts normally proliferate 48 h after irradiation despite the presence of high levels of CPD in their genome. These observations emphasize the role of CPD in the mutagenic effects of UV-B.  相似文献   

3.
Abstract— Visible radiation can substantially influence the degree to which plant photosynthesis is inhibited by UV-B radiation. This study was designed to separate the immediate effects of visible radiation on UV-B photosynthetic inhibition from the indirect influence of visible irradiation on morphological and physiological properties of leaves during leaf development. Soybean plants were pretreated in growth chambers with either high or low visible irradiance (750 and 70 μmol m-2s-1 quantum flux in the 400–700 nm waveband, respectively) during the development of leaves used subsequently for UV irradiation. Test leaves still attached to the plant were exposed to 5 h of polychromatic UV-B irradiation and the photosynthetic capacity (net CO2 exchange) was determined before and after the UV irradiation. During the UV irradiation, plants from both pretreatment groups received either high or low visible flux. Development of leaves in the high visible flux pretreatment conditions resulted in thicker leaves, higher chlorophyll a/b ratios, more UV-absorbing pigments, and reduced sensitivity to the UV-B irradiation. However, higher visible flux during the UV-B irradiation resulted in greater depression of photosynthesis by the UV-B irradiation. The relative magnitude of photosynthetic depression under these treatment combinations was the same when photosynthesis was measured under either light-limited or light-saturated conditions.  相似文献   

4.
I measured the induction of cytosine-cytosine dimer (C-C) densities after UV-C (less than 290 nm) and UV-B irradiation (290-320 nm) in the 2'-deoxy-[3H]cytidine labeled DNA of Cloudman S91 mouse melanoma cells using a new, sensitive high pressure liquid chromatography procedure. UV-B exposure resulted in 0.000034% C-C/J m-2 of the total cytosine radioactivity which is 10 times less than the rate during UV-C irradiation. Previous work with these melanoma cells showed a 4-fold lower rate of induction of thymine-containing pyrimidine dimers by UV-B than UV-C light (Niggli Photochem. Photobiol. 52, 519-524, 1990). Based on these results, the calculated ratios for the pyrimidine dimer subspecies showed no significant difference following UV-C and UV-B exposure. However, UV-C and UV-B light induce 10-20 times more thymine-containing pyrimidine dimers than C-C in the DNA of S91 cells.  相似文献   

5.
To understand and characterize non-dimer DNA damage and cytotoxicity induced by ultraviolet-B light (UV-B, 290-320 nm), an alkaline elution technique for analysis of DNA damage was used on Chinese hamster V-79 cells. Ultraviolet-B exposure produced a dose-dependent induction of DNA single strand breaks and DNA-protein crosslinks; however, there was an absence of DNA-DNA interstrand crosslinks. Neither of these types of DNA damage were repaired within a a 24 h incubation of the cells following a single UV-B exposure; rather the damage increased. Using a colony forming assay, we found that UV-B exposure resulted in an increase of cytotoxicity in a dose-dependent fashion. In addition, UV-B exposure inhibited DNA and RNA synthesis. The role of non-dimer DNA damage in the cytotoxicity induced by UV-B is discussed.  相似文献   

6.
The mechanisms of ultraviolet-B (UV-B)-induced apoptosis and the role of p38 mitogen-activated protein kinase (MAPK) were investigated in murine peritoneal macrophages. Exposure of murine peritoneal macrophages to UV-B irradiation induced rapid apoptosis concurrent with DNA fragmentation and activation of caspase-3 but did not activate caspase-1. UV-B irradiation (100 mJ/cm2) also induced expression of phospho-p38 and -c-Jun N-terminal kinase (JNK) MAPK; however, no significant expression of phospho-p42/44 was observed 120 min after exposure. Pretreatment of macrophages with a p38 MAPK inhibitor, 4-(4-fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)-1H-imidazole (SB202190), and a caspase-3 inhibitor, N-acetyl-Asp-Glu-Val-Asp-CHO, suppressed UV-B irradiation-induced apoptosis as observed by DNA laddering and DNA fragmentation estimation quantitatively. Pretreatment with caspase-1 inhibitor, N-acetyl-Tyr-Val-Ala-Asp-CHO, had no effect. UV-B-induced caspase-3 activation resulted in the cleavage of poly-(ADP-ribose) polymerase (PARP), which was inhibited by the caspase-3 inhibitor. SB202190 pretreatment also prevented activation of caspase-3 and the cleavage of PARP. However, the caspase-3 and -1 inhibitors did not affect UV-B-induced expression of phospho-p38 and -JNK. These results suggest that activation of p38 MAPK upstream of caspases might play an important role in the apoptotic process of macrophages exposed to UV-B irradiation.  相似文献   

7.
Abstract
I measured the induction of cytosine-cytosine dimer (C-C) densities after UV-C (< 290 nm) and UV-B irradiation (290–320 nm) in the 2'-deoxy-[3H]cytidine labeled DNA of Cloudman S91 mouse melanoma cells using a new, sensitive high pressure liquid chromatography procedure. UV-B exposure resulted in 0.000034% C-C/J m-2 of the total cytosine radioactivity which is 10 times less than the rate during UV-C irradiation. Previous work with these melanoma cells showed a 4-fold lower rate of induction of thymine-containing pyrimidine dimers by UV-B than UV-C light (Niggli Photochem. Photobiol . 52 , 519–524, 1990). Based on these results, the calculated ratios for the pyrimidine dimer subspecies showed no significant difference following UV-C and UV-B exposure. However, UV-C and UV-B light induce 10–20 times more thymine-containing pyrimidine dimers than C-C in the DNA of S91 cells.  相似文献   

8.
Abstract— The effect of UV-B irradiation on the development of Dictyostelium discoideum from amoebae to mature sorocarps was studied. Radiation with wavelength ≤ 310 nm was very efficient in retarding and inhibiting the development especially when the organisms were exposed during the first 12 h. At a wavelength of 280 nm an irradiation of 1 h at an irradiance of < 0.2 W m-2 was sufficient to completely inhibit sorocarp development. The fluence-dependence shows as well that the development of D. discoideum is a very sensitive system to indicate UV-B irradiation. Furthermore, since the sorocarp development is concluded within 48 h it can serve as a fast bioassay for hazardous levels of increased UV-B irradiation which have been predicted as a result of the ozone reduction in the stratosphere due to the manmade production and emission of chlorofluoromethanes.  相似文献   

9.
SKH-1 hairless mice repair UV-induced pyrimidine dimers in epidermal DNA   总被引:3,自引:0,他引:3  
The SKH-1 hairless mouse strain has been used extensively as a model for human photocarcinogenesis, photoimmunology and photoaging, but little is known about DNA repair in living mouse skin. Mice were irradiated with UV-B light at doses which produce mild to severe sunburn, and the frequency of pyrimidine dimers in epidermal DNA was measured immediately and 6 h after irradiation using T4 endonuclease V treatment and alkaline agarose gel electrophoresis. The results demonstrate significant removal of pyrimidine dimers in mouse skin in vivo, with a dimer half-life of 7.4 h. These findings are similar to the repair of dimers in human skin in vivo. The SKH-1 hairless mouse is thus a useful model for pyrimidine dimer repair in human skin.  相似文献   

10.
The biological effectiveness of thymine-thymine cyclobutane dimers specifically induced by photosensitized ultraviolet-B irradiation was analyzed by host-cell reactivation of triplet-sensitized, UV-B irradiated plasmid pRSV beta gal DNA transfected into normal and repair-deficient Chinese hamster ovary cells. For comparison, pRSV beta gal DNA was also UV-C irradiated and transfected into the same cell lines. Ultraviolet endonuclease-sensitive site induction was determined after UV-C irradiation or acetophenone-sensitized UV-B irradiation of plasmid pRSV beta gal DNA. These data were used to calculate the number of cyclobutane pyrimidine dimers required to inactivate expression of the lacZ reporter gene in each irradiation condition. Transfection with UV-C-irradiated plasmid DNA resulted in a significantly greater reduction of reporter gene expression than did transfection with acetophenone-sensitized UV-B-irradiated pRSV beta gal DNA at equivalent induction of enzyme-sensitive sites. Since only a fraction of the inhibition could be accounted for by noncyclobutane dimer photoproducts, these results suggest that cytosine-containing pyrimidine cyclobutane dimers may be more effective than thymine-thymine dimers in inhibiting transient gene expression as measured in such host-cell reactivation experiments in mammalian cells.  相似文献   

11.
The changes in turbidity and protein secondary structure of alpha-crystallin after a 72 h UV-B (302 nm) irradiation in aqueous solution have been determined by UV spectrophotometry and Fourier transform infrared (FT-IR) microspectroscopy with reflection mode. The relative transmission of alpha-crystallin aqueous solution gradually decreases with the exposure time, indicating that the transparent alpha-crystallin aqueous solution becomes opaque with prolonged UV-B irradiation. The turbidity induced by UV-B shows first-order kinetics due to the photo-induced aggregation. The modification of the secondary structure of the alpha-crystallin molecule in aqueous solution caused by this aggregation might enhance the alpha-helix and beta-turn structures from 8.14 to 14.92% and from 24.46 to 35.54%, respectively; reduce the beta-sheet structure from 60.20% to 43.77%; and leave the random coil structure almost unaltered. The secondary conformation of alpha-crystallin changes gradually but evidently with its increase of turbidity during UV-B exposure.  相似文献   

12.
A new approach to the realization of the electrochemical DNA hybridization probe is described. It is based on the exchange of chloride ion between the polypyrrole layer and the buffer. The shape of the cyclic voltammogram is modulated by the negative charge density at this interface, resulting from the immobilized target DNA. The negative charge density increases when the complementary DNA hybridizes with the probe DNA. The hybridization event can be clearly seen in the cyclic voltammogram before and after the addition of the probe DNA. The immobilization is accomplished via the Mg2+ bridging complex between phosphonic acid groups of the poly[2,5-dithienyl-(N-3-phosphorylpropyl)pyrrole] grafted at the polypyrrole surface and the phosphate groups of the target DNA.  相似文献   

13.
Exposure of normal human breast skin ex vivo to physiological levels of UV-B and solar simulated UV results in a UV dose- and time-dependent increase in epidermal p53, as determined by PAGE analysis. Peak p53 levels are detected 12 to 24 h post irradiation with UV-B (470-1410 mJ cm-2) and solar simulated UV (5-12 minimal erythema dose (MED) equivalents). Irradiation with an FS20 UV-B lamp, contaminated with UV-A and UV-C (74-1111 mJ cm-2), also induces peak levels after 12 h incubation at 37 degrees C but these levels persist to 36 h post UV irradiation. In all cases p53 levels start to return to normal by 48 h culture. A significant positive correlation is demonstrated between UV-B dose (47-1645 mJ cm-2) and p53 level (p < 0.01, R > 0.977) in explants cultured for 24 h at 37 degrees C post irradiation. The FS20 induces a 'UV-B' dose-dependent increase in p53 to a maximum from 370 to 1111 mJ cm-2. Similarly, solar simulated UV induces a plateau of peak p53 induction between 5 and 15 MED equivalents. Immunohistochemical analysis using microwave retrieval on 5 microns sections shows the same pattern of p53 staining with UV-B and solar UV insult, but proves unreliable as a method of quantification. These results suggest that the skin explant model may be a useful tool in the evaluation of UV-induced epidermal cell damage, providing a valuable alternative to in vivo studies.  相似文献   

14.
The effects of pH and ultraviolet-B (UV-B) irradiation on the secondary structure of human serum albumin (HSA) in the absence or presence of captopril were investigated by an attenuated total reflection (ATR)/Fourier transform infrared (FTIR) spectroscopy. The UV-B exposure affecting the stability of captopril before and after captopril-HSA interaction was also examined by using confocal Raman microspectroscopy. The results indicate that the transparent pale-yellow solution for captopril-HSA mixture in all pH buffer solutions, except pH 5.0 approximately 7.0, changed into a viscous form then a gel form with UV-B exposure time. The secondary structural transformation of HSA in the captopril-HSA mixture with or without UV-B irradiation was found to shift the maxima amide I peak in IR spectra from 1652 cm(-1) assigned to alpha-helix structure to 1622 cm(-1) because of a beta-sheet structure, which was more evident in pH 3.0, 8.0 or 9.0 buffer solutions. The Raman shift from 1653 cm(-1) (alpha-helix) to 1670 cm(-1) (beta-sheet) also confirmed this result. Captopril dissolved in distilled water with or without UV-B irradiation was determined to form a captopril disulfide observed from the Raman spectra of 512 cm(-1), which was exacerbated by UV-B irradiation. There was little disulfide formation in the captopril-HSA mixture even with long-term UV-B exposure, but captopril might interact with HSA to change the protein secondary structure of HSA whether there was UV-B irradiation or not. The pH of the buffer solution and captopril-HSA interaction may play more important roles in transforming the secondary structure of HSA from alpha-helix to beta-sheet in the corresponding captopril-HSA mixture than UV-B exposure. The present study also implies that HSA has the capability to protect the instability of captopril in the course of UV-B irradiation. In addition, a partial unfolding of HSA induced by pH or captopril-HSA interaction under UV-B exposure is proposed.  相似文献   

15.
We have addressed the question whether the level of UV-B induced DNA damage can be accurately assessed by the measurement of the rate of unscheduled DNA synthesis (UDS). Cultured human fibroblasts were irradiated with UV radiation at 290, 313 or 365 nm. The LD50 was 85 J/m2 at 290 nm, 4500 J/m2 at 313 nm, and 70 kJ/m2 at 365 nm. The analysis of UDS measurements indicate complete arrest of repair processes within 24 h after irradiation, irrespective of the dose (in the range 10-60 J/m2 at 290 nm, and 250-1000 J/m2 at 313 nm). Irradiation at 365 nm failed to yield detectable evidence of UDS. Incubation of irradiated cells with an antiserum directed against both 6-4 type and cyclobutane-type pyrimidine dimers shows a clear parallelism between the disappearance of the antibody-binding determinants and the variation of the rate of UDS vs time after the end of the irradiation. Thus it is concluded that in UV-B irradiated normal cultured human fibroblasts, the lack of UDS reflects the absence of immunodetectable pyrimidine dimers.  相似文献   

16.
DNA repair plays a central role in the cellular response to UV. In this work we have studied the response of skin cells (i.e. fibroblasts and keratinocytes) from the same or from different individuals after both ultraviolet-B (UV-B) and ultraviolet-C (UV-C) irradiations using the comet assay to characterize the specific cellular response to UV-induced DNA damage. Cells were irradiated with increasing doses of UV-B or UV-C. To study the UV dose dependency of initial steps of DNA repair, namely recognition and incision at DNA damage level, the comet assay was performed, under alkaline conditions, 60 min after UV irradiation to allow detection of DNA strand breaks. Comparative analysis of tail moment values after UV exposure of cells from the same or from different individuals showed interexperimental and interindividual variations, implying that repeated assays are necessary to characterize the individual DNA repair capacity. With increasing doses of UV in keratinocytes, a plateau was rapidly reached after irradiation, whereas in fibroblasts a linear dose-effect relationship was observed. These interindividual variations associated with cellular specificity in DNA response may be of significance in skin cell and individual susceptibility toward UV-induced carcinogenesis.  相似文献   

17.
18.
By using two strains of Arthrospira (Spirulina)platensis, an economically important filamentous cyanobacterium, we compared the impairment of PSII activity and loss of D1 protein content under UV-B radiation. Our study showed that UV-B radiation induced a gradual loss of the oxygen-evolving activity to about 56% after 180 min UV-B irradiation both in strains 439 and D-0083, which have been kept under indoor and an outdoor culturing conditions, respectively for a prolonged period of time. The loss of oxygen evolution was accelerated in both strains in the presence of lincomycin, an inhibitor of protein synthesis, and the amount of D1 protein showed a decrease comparable to that of oxygen evolution during the UV-B exposure. However, the UV-B induced loss of oxygen-evolving activity and D1 protein amount was largely prevented when A. platensis cells were exposed to UV-B irradiance supplemented with visible light. Comparison of the two strains also showed a smaller extent of D1 protein synthesis dependent PSII repair in the indoor strain. Our results show that turnover of the D1 protein is an important defense mechanism to counteract the UV-B induced damage of PSII in A. platensis, and also that visible light plays an important role in maintaining the function of PSII under simultaneous exposure to UV-B and visible light.  相似文献   

19.
Radiation-induced stress, either from visible or UV light, is strongest at midday. We found that, in the absence of stress or time cues, Euglena gracilis Z was the most resistant to UV-C and UV-B at subjective midday, whether judged from immediate or reproductive survival. The circadian UV-resistance rhythms were free-running in stationary cultures under 1-h light/1-h dark cycles or continuous darkness, indicating that cell-cycle dependent DNA susceptibility to UV was not involved. We moreover examined what was the primary cause of the circadian UV resistance, estimated as the immediate cell survival. The half-maximal lethal dose (LD(50)) of UV-C at subjective midday (the most resistant phase) was 156 J/m(2), which is approximately 3-fold that at subjective midnight. The same was true for UV-B, except the LD(50) was approximately 13-fold that of UV-C. Temperature during UV irradiation had little effect, indicating that survival was not mediated via enzymatic reactions. Non-enzymatic antioxidants were added 5 min before UV irradiation. Dimethylsulfoxide (a hydroxyl radical scavenger) increased survival after UV-B, but had little effect after UV-C; conversely, sodium ascorbate increased survival after UV-C, but not after UV-B. These findings suggest that circadian rhythms of resistance to UVs involve a common mechanism for maximizing non-enzymatic antioxidative capacity at subjective midday, but the specific antioxidants differ.  相似文献   

20.
Unscheduled DNA synthesis (UDS) has been shown to be saturated above a threshold dose of UV-C in human fibroblasts in vitro. We have investigated by autoradiography whether a similar saturation occurs in human skin in vivo with UV-B and whether this phenomenon correlates with the erythemal response. In addition, we determined the time course of UDS at 24 h after exposure and the effect of dual exposures separated by 24 h. The dose-response curve was established by exposure to 1/16, 1/8, 1/4, 1/2, 1, 2, 3, 4 and 6 MEDs UV-B. For the time-course study, areas exposed to 1/2 and 2 MEDs were biopsied after 1, 3, 6, 12 and 24 h. Autoradiography was performed in vitro. The dose-response curve showed a significant increase in UDS from 1/16 to 1 minimal erythema dose (MED), whereas no significant difference was observed between 1 MED and the higher UV-B doses tested. The 24 h time sequence revealed a gradual decrease in UDS activity. The 1/2 MED curve declined more rapidly and reached the zero-level between 12 h and 24 h, whereas about 50% of the initial UDS value was still retained 24 h after 2 MEDs. The dual-dose study revealed that a second hit of fractions of the MED resulted in lower levels of UDS than induced by these fractions alone in previously untreated areas. UDS increases with the erythemal dose between 1/16 and 1 MED. It reaches a plateau after 1 MED and cannot be increased by doses up to 6 MEDs, suggesting a saturation of excision repair in vivo. Time course studies support such a saturation phenomenon. The failure to increase significantly UDS by a second irradiation 24 h after the first exposure needs further clarification. Since persistence of DNA lesions may lead to an accumulation after repeated exposures, additional mechanisms other than excision repair may protect human skin by error-free removal of possibly mutagenic sites. Photoreactivation may be important in this respect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号