首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We study the electron transport in three terminal junctions and quantum rings looking for the classical deflection of electron trajectories in the presence of intersubband scattering. We indicate that although the Aharonov-Bohm oscillations and the Lorentz force effects co-exist in the low subband transport, for higher Fermi energies a simultaneous observation of both effects is difficult and calls for carefully formed structures. In particular, in quantum rings with channels wider than the input lead the Lorentz force is well resolved but the Aharonov-Bohm periodicity is lost in chaotic scattering events. In quantum rings with equal lengths of the channels and T-shaped junctions the Aharonov-Bohm oscillations are distinctly periodic but the Lorentz force effects are not well pronounced. We find that systems with wedge-shaped junctions allow for observation of both the periodic Aharonov-Bohm oscillations and the magnetic deflection.  相似文献   

2.
The spectrum of neutral intersubband excitations in single and double quantum wells has been studied by the inelastic light scattering method. It is shown that excitation energies in an external magnetic field have an anisotropic component proportional to the dipole moment of excitations along the growth axis of the quantum wells. Consequently, the measurement of excitation energy in a magnetic field makes it possible to experimentally estimate the quantitative measure of asymmetry of the quantum wells (dipole moment of the intersubband transition). In addition, a parallel magnetic field makes it possible to considerably extend the range of momenta studied since it shifts the dispersion curves in the momentum space by the value of the anisotropic component. A new method is proposed for determining the symmetry of double quantum wells. In asymmetric wells, intersubband excitations appear between the layers and have a large dipole moment along the growth axis. In symmetric wells, the magnetic field itself induces the dipole moment of intersubband excitations so that the excitation spectrum does not change upon magnetic field inversion. Analysis of energy anisotropy in intersubband excitations in double quantum wells makes it possible to determine the symmetry of double wells to a high degree of accuracy.  相似文献   

3.
We present the first measurements concerning the photon drag effect in a two-dimensional electron gas based on intersubband transitions in high magnetic fields. It is shown that the excitation mechanism of the drag voltage in a magnetic field differs obviously from the case of zero magnetic field. The longitudinal as well as the Hall drag voltage show strong oscillations around zero when the magnetic field is swept. Both consist of a B-symmetrical and an antisymmetrical part with the same periodicity in B as the magnetoresistanceRxx. The drag voltage oscillations are strongly correlated to the relative position of Fermi energy and Landau levels and are independent of the photon energy in the range of usable laser lines.  相似文献   

4.
By using an appropriate coordinate transform we have calculated the intersubband optical absorption in the single square well under a tilted magnetic field. In this study the dependence of the intersubband transitions on the magnetic field strength and the direction of the magnetic field (tilt angle) is discussed. We show that intersubband optical absorption is sensitive to the tilt angle. This behaviour in the intersubband optical absorption gives a new degree of freedom in regions of interest device applications.  相似文献   

5.
A new phenomenon, viz., field-asymmetric transverse magnetoresistance of a doped asymmetric quantum-size structure discovered in a magnetic field parallel to the heteroboundary planes, is studied experimentally and theoretically. The magnetoresistance asymmetry relative to the field direction, which is independent of the direction of transport current, is observed when a lateral electric field is embedded in the structure with the help of alloyed metallic contacts. In the theoretical part of the paper, it is shown that the contribution to current, which is asymmetric in the magnetic field, can be consistently described in the framework of the theory of spontaneous current states and photovoltaic effect in systems without an inversion center; the reason behind the emergence of this current is associated with the asymmetry of the energy spectrum of charge carriers relative to the quasimomentum. It is shown that the change in the size and shape of Fermi contours in a magnetic field determines the magnitude of the strong negative magnetoresistance associated with the intersubband scattering under investigation and is found to be responsible for the emergence of a qualitatively new effect mentioned in the title of this paper.  相似文献   

6.
The spectrum of collective excitations in a quasi-two-dimensional electron system was studied by the method of Raman scattering spectroscopy. In an applied magnetic field, such systems exhibit collective excitations related to the electron transitions between dimensionally quantized subbands with a change in the Landau level index (intersubband Bernstein modes). It is shown that these modes interact with the fundamental intersubband excitations of the charge and spin densities, the interaction energy being determined by the excitation quasimomentum. Interaction of the intersubband Bernstein modes and the fundamental intersubband excitations with quasi-two-dimensional LO phonons was studied. Behavior of the new branches of collective excitations in a quasi-two-dimensional electron system possessing more than one occupied Landau level was studied and the nature of these branches was determined.  相似文献   

7.
We theoretically analyze the collective oscillations of 2D electrons in nanotubes. In the presence of a magnetic field parallel to the tube axis, the plasmon frequencies undergo Aharonov-Bohm oscillations. The effect can manifest itself in infrared absorption and in Raman scattering. We calculate the cross sections for inelastic light scattering by plasmons.  相似文献   

8.
We use subpicosecond laser pulses to generate and monitor in real time collective oscillations of electrons in a modulation-doped GaAs quantum well. The observed frequencies match those of intersubband spin- and charge-density excitations. Light couples to coherent density fluctuations through resonant stimulated Raman scattering. Because the spin- and charge-related modes obey different selection rules and resonant behavior, the amplitudes of the corresponding oscillations can be independently controlled by using shaped pulses of the proper polarization.  相似文献   

9.
We observe coherent spin oscillations in an antiferromagnetic spin-1 Bose-Einstein condensate of sodium. The variation of the spin oscillations with magnetic field shows a clear signature of nonlinearity, in agreement with theory, which also predicts anharmonic oscillations near a critical magnetic field. Measurements of the magnetic phase diagram agree with predictions made in the approximation of a single spatial mode. The oscillation period yields the best measurement to date of the sodium spin-dependent interaction coefficient, determining that the difference between the sodium spin-dependent s-wave scattering lengths a(f=2) - a(f=0) is 2.47+/-0.27 Bohr radii.  相似文献   

10.
We have carried out the theoretical investigation of the differential cross section for the electron Raman scattering process, which is associated with intersubband transitions in a two-dimensional quantum pseudodot system. The great advantage of our methodology is that it enables confinement regimes by varying two parameters in the model potential. It is found that the differential cross section is affected by the external magnetic field, the geometrical size and the chemical potential of the pseudodot system.  相似文献   

11.
Simulations of an optically pumped intersubband laser in magnetic field up to 60 T are performed within the steady-state rate equations model. The electron-polar optical phonon scattering is calculated using the confined and interface phonon model. A strong oscillatory optical gain vs. magnetic field dependence is found, with two dominant gain peaks occurring at 20 and 40 T, the fields which bring appropriate states into resonance with optical phonons and thus open additional relaxation paths. The peak at 20 T exceeds the value of gain achieved at zero field.  相似文献   

12.
在低温强磁场条件下,对In0.53Ga0.47As/In0.52Al0.48As量子阱中的二维电子气进行了磁输运测试.在低磁场范围内观察到正磁电阻效应,在高磁场下这一正磁电阻趋于饱和,分析表明这一现象与二维电子气中的电子占据两个子带有关.在考虑了两个子带之间的散射效应后,通过分析低磁场下的正磁电阻,得到了每个子带电子的迁移率,结果表明第二子带电子的迁移率高于第一子带电子的迁移率.进一步分析表明,这主要是由两个子带之间的 关键词: 二维电子气 正磁电阻 子带散射  相似文献   

13.
在一个特殊设计的三垒双阱异质结构中 ,注入到入射端量子阱中的电子 ,首先经过子带间弛豫填充到较低能级 ,紧接着通过共振隧穿逃逸出后面的双势垒结构 ,流入收集电极 ,完成了整个输运过程。通过比较带间光荧光谱中E2 HH1 与E1 HH1 两峰的强度 ,我们发现外加垂直磁场可以抑制子带间的LO声子和LA声子散射 ,使能量较高的子带上出现了明显的非热平衡占据。这一发现提供了一种新的控制子带间散射速率 (量子级联激光器的主要机制 )的有效方法 ,使得在量子阱子带间实现粒子数反转变得更加容易。  相似文献   

14.
We report time-dependent terahertz current oscillations on an n=10 single-walled zigzag carbon nanotube (CNT) that is 100 nm long. To obtain transport characteristics in this CNT, we developed an ensemble Monte Carlo (MC) simulator, which self-consistently calculates the electron transport and electrical potential. The ensemble MC simulations indicate that, under certain dc bias and doping conditions, the average electron velocity and concentration oscillate. This leads to current oscillations in space and time, on the tube, and at the contacts. We attribute this to accumulation and depletion of the CNT electrons at different locations on the tube, giving rise to low and high density electron regions. These local dipoles are a result of intra- and intersubband scatterings and different subband dispersion relations. This in turn forms propagating dipoles and current oscillations.  相似文献   

15.
We obtain pulse-driven Rabi oscillations guided by a generalization of the rotating-wave approximation to include, in the optical-Bloch equations, two-level systems with a time-varying transition energy. We achieve this by using chirped pulses with the central frequency given by the time-varying transition energy. Using this approach, we predict Rabi oscillations in intersubband transitions in a two-subband n-type modulation-doped quantum well by taking into account the time-dependent intersubband energy-gap renormalization due to depolarization-shift effects. We obtain Rabi oscillations for jpi (j=0,1,2, ) pulses in the presence of dephasing.  相似文献   

16.
Magnetoresistance measurements have been performed in narrow GaAs/AlGaAs wires in order to study the scattering process in mesoscopic wires. Amplitude analysis of the Shubnikov -de Haas oscillations shows that electrons have two scattering times, depending upon the magnetic field range. The critical field which separates these scattering times seems to be determined by the relation between the wire width and the electron cyclotron radius. This effect is discussed in terms of the electron trajectories in a wire under the magnetic field.  相似文献   

17.
研究了不同沟道厚度的In0.53Ga0.47As/In0.52Al0.48As量子阱中双子带占据的二维电子气的输运特性.在考虑了两个子带电子之间的磁致子带间散射效应后,通过分析Shubnikov-de Haas振荡一阶微分的快速傅里叶变换结果,获得了每个子带电子的浓度、输运散射时间、量子散射时间以及子带之间的散射时间.结果表明,对于所研究的样品,第一子带电子受到的小角散射更强,这与第一子带电子受到了更强的电离杂质散射有 关键词: 二维电子气 散射时间 自洽计算  相似文献   

18.
The effect of microwave electromagnetic radiation on the resistance of the 2D electron gas in a GaAs/AlAs heterostructure in a strong magnetic field is investigated. It is shown that, under the nonequilibrium conditions caused by microwave radiation, the aforementioned 2D system exhibits giant oscillations of its resistance with varying magnetic field. When the measuring current density is small, an increase in the microwave power leads to the appearance of an absolute negative resistance at the main minimum of these oscillations, which lies near the cyclotron resonance. The experimental data are found to be in qualitative agreement with the theory of multiphoton photoinduced impurity scattering [J. Inarrea and G. Platero, Appl. Phys. Lett. 89, 052109 (2006)].  相似文献   

19.
We investigate intersubband relaxation rates above the optical phonon energy in a InAs/GaSb superlattice using saturation spectroscopy. A high-intensity free-electron laser tuned to the intersubband transition energy is used to saturate the absorption process revealing picosecond relaxation rates. The effects of the parallel magnetic field and laser energy on the relaxation processes are explored.  相似文献   

20.
In the presence of a normally incident mid-IR pulsed laser field, phonon-assisted photon absorption by both intrasubband and intersubband phonon scattering of conduction electrons in GaAs/AlGaAs quantum wells are predicted. The novel non-resonant and non-linear intersubband absorption is found by including the photon-induced phonon scattering process in a Boltzmann equation for phonon energies smaller than the energy separation between two electron subbands in the quantum well. The predicted phonon-assisted photon absorption by intersubband transitions of electrons from the first to the second subband is a unique feature in quantum-well systems and is expected to have a significant effect on the electron populations in both subbands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号