首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The gadolinium (Gd) member of a new type of heteropolytungstates that contain one lanthanide and two transition metal ions in a triangular arrangement is reported. The compound NaK6Gd0.33 [((VO)2Gd(H2O)4K2(H2O)2(Na)(H2O)2)(α-B-AsW9O33)2]·24H2O (1) was prepared from acidified aqueous solutions of Na2WO4·2H2O, As2O3 and VOSO4·5H2O to which Gd3+ ions were added. The single crystal X-ray structure analysis (monoclinic, space group P21/m) shows that the anion consists of two [α-B-AsIIIW9O33]9? trilacunary Keggin-type units linked by two VO2+, one Gd3+ as well as weakly by two K+ and one Na+ ions, resulting in a sandwich-type structure with idealized C 2v symmetry. The problem of positioning crystal lattice and special polyoxometalate sites with different cations is discussed also in connection with supramolecular chemistry aspects and as an option for further research. A fit of the magnetic susceptibility yielded exchange coupling constants of J VV = ?2.55 cm?1 (anti-ferromagnetic) between the vanadium ions and J GdV = 0.6 cm?1 (ferromagnetic) between the Gd and each of the two vanadium ions. The complete magnetochemical analysis also revealed a partial occupancy of the Na+ sites in the counter-cation–water system by Gd3+ ions (0.33 Gd3+ ions in total).  相似文献   

2.
The luminescence of Ce3+, Sm3+, Eu3+, Gd3+, Tb3+, and Dy3+ in NaLn(SO4)2H2O (Ln = lanthanide) is reported. Only Ce3+, Gd3+, and Tb3+ show efficient emission. This is explained in terms of an energy-gap law. Energy transfer is studied in several codoped compositions. The mutual transfer between Gd3+ ions is the only one encountered with high probability. The several transfers are discussed and where possible their rates are calculated.  相似文献   

3.
The reaction between DTPA (diethylenetriaminepenta-acetic acid)-anhydride and p-aminosalicylic acid (PAS) affords a novel ligand, [DTPA(PAS)2], able to form stable heterobimetallic complexes with Gd3+ and Fe3+ ions. The lanthanide ion occupies an internal coordination cage formed by three nitrogen atoms, two carboxylate and two carboxoamido groups of the ligand, whereas the outer salicylic moieties form stable chelate rings with FeIII ions. The stoichiometry of the resulting heterobimetallic complexes, established by measurements of water proton relaxation enhancement, is [(H2O)-Gd-DTPA(PAS)2]2-Fe(H2O)2 or [(H2O)-Gd-DTPA(PAS)2]3-Fe depending on the pH of the aqueous solution. The individual contributions to the observed relaxation enhancement from Gd3+ and Fe3+ paramagnetic ions have been clearly distinguished and analysed.  相似文献   

4.
The title complex, [Gd2(C3H7NO2)4(H2O)8](ClO4)6, contains centrosymmetric dimeric [Gd2(Ala)4(H2O)8]6+ cations (Ala is α‐alanine) and perchlorate anions. The four alanine mol­ecules act as bridging ligands linking two Gd3+ ions through their carboxylate O atoms. Each Gd3+ ion is also coordinated by four water mol­ecules, which complete an eightfold coordination in a square‐antiprism fashion. The perchlorate anions and the methyl groups of the alanine ligands are disordered.  相似文献   

5.
Four lanthanide metal-organic frameworks (Ln-MOFs), namely {[Me2NH2][LnL]·2H2O}n (Ln = Eu 1, Tb 2, Dy 3, Gd 4), have been constructed from a new tetradentate ligand 1-(3,5-dicarboxylatobenzyl)-3,5-pyrazole dicarboxylic acid (H4L). These isostructural Ln-MOFs, crystallizing in the monoclinic P21/c space group, feature a 3D structure with 7.5 Å × 9.8 Å channels along the b axis and the point symbol of {410.614.84} {45.6}2. The framework shows high air and hydrolytic stability, which can keep stable after exposed to humid air for 30 days or immersed in water for seven days. Four MOFs with different lanthanide ions (Eu3+, Tb3+, Dy3+, and Gd3+) ions exhibit red, green, yellow, and blue emissions, respectively. The Tb-MOF emitting bright green luminescence can selectively and rapidly (<40 s) detect Fe3+ in aqueous media via a fluorescence quenching effect. The detection shows excellent anti-inference ability toward many other cations and can be easily recognized by naked eyes. In addition, it can also be utilized as a rapid fluorescent sensor to detect acetone solvent as well as acetone vapor. Similar results of sensing experiments were observed from Eu-MOF. The sensing mechanism are further discussed.  相似文献   

6.
A hydrothermal reaction of Gd(NO3)3 and 2, 2′‐diphenic acid give rise to a new coordination compound equation/tex2gif-stack-2.gif[Gd2(H2O)2(C14H8O4)3] with one‐dimensional structure. Single crystal X‐ray studies shows that the compound has infinite O‐Gd‐O one‐dimensional chains resulting from a bonding between Gd3+ cations and diphenate anions. The Gd3+ ions are distorted dodecahedra with respect to oxygen atoms. Magnetic investigations show no ordering up to 4K and the compound exhibit photoluminescence at room temperature.  相似文献   

7.
Formation of complexes between the lanthanide ions and N,N′-bis(salicylidene)-4-methyl-1,3-phenylenediamine ligand was studied in solution by pH potentiometry. The potentiometric titration was performed at 25.00 °C in 0.1 mol·dm?3 NaClO4 ionic strength and in DMSO:water (30:70 v:v) solvent mixture. N,N′-bis(salicylidene)-4-methyl-1,3-phenylenediamine ligand (H2L) occurs in three forms: fully or partially deprotonated and unionized. Computer analysis of potentiometric data indicated that in solution the lanthanide (Ln) complexes exist as LnL2, Ln(HL)2 and Ln(H2L)2 species. This observation appears to be in contrast to the solid-state behavior of these complexes prepared in a self-assembly process and structurally defined. Stability constants for La3+, Eu3+, Gd3+, Tb3+, Ho3+ and Lu3+ (Ln3+) complexes were determined. The order of stabilities of LnL2 species in terms of metal ions is La3+ > Eu3+ ≈ Gd3+ = Tb3+ < Ho3+ < Lu3+ with a prominent “gadolinium break”.  相似文献   

8.
Rare-earth elements are emerging contaminants of soil and water bodies which destiny in the environment and effects on organisms is modulated by their interactions with natural ligands produced by bacteria, fungi and plants. Within this framework, coordination by harzianic acid (H2L), a Trichoderma secondary metabolite, of a selection of tripositive rare-earth cations Ln3+ (Ln3+ = La3+, Nd3+, Sm3+, and Gd3+) was investigated at 25 °C, and in a CH3OH/0.1 M NaClO4 (50/50 w/w) solvent, using mass spectrometry, circular dichroism, UV–Vis spectrophotometry, and pH measurements. Experimental data can be satisfactorily explained by assuming, for all investigated cations, the formation of a mono-complex (LnL+) and a bis-complex (LnL2). Differences were found between the formation constants of complexes of different Ln3+ cations, which can be correlated with ionic radius. Since gadolinium is the element that raises the most concern among lanthanide elements, its effects on organisms at different levels of biological organization were explored, in the presence and absence of harzianic acid. Results of ecotoxicological tests suggest that harzianic acid can decrease gadolinium biotoxicity, presumably because of complex formation with Gd3+.  相似文献   

9.
Interaction of a series of lanthanide cations (Ln3+) with a symmetrical octamethyl-substituted cucurbituril (OMeQ[6]) has been investigated. X-ray single-crystal diffraction analysis has revealed that the interaction results in the formation of adducts of OMeQ[6] with aqua complexes of lanthanide cations ([Ln(H2O)8]3+), Ln = Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb in OMeQ[6]–Ln(NO3)3–H2O systems. However, no solid crystals were obtained from systems containing La, Ce, Pr, Nd and Sm. X-ray diffraction analysis has revealed that although the solid adducts fall into two isomorphous groups, there are no significant differences in the interactions between OMeQ[6] and [Ln(H2O)8]3+ complexes and in the corresponding supramolecular assemblies. Thermodynamic parameters for the interaction between OMeQ[6] and [Ln(H2O)8]3+ complexes based on isothermal titration calorimetry experiments show two periods corresponding to the above two systems, with the lighter lanthanide cations preferring to remain in solution and the heavier lanthanide cations forming crystalline solids. Electron spectroscopy has shown that interaction of OMeQ[6] with lanthanide cations could provide a means of isolating heavier lanthanide cations from their lighter counterparts.  相似文献   

10.
The reaction of lanthanide nitrate with 1,4-di (N,N-diisopropylacetamido)-2,3(1H,4H)-quinoxalinedione (L) yields six novel Ln(III) complexes ([Ln2L2(NO3)6(H2O)2]·H2O) which are characterized by elemental analysis, thermogravimetric analysis (TGA), conductivity measurements, IR, electronic and 1H NMR spectroscopies. A new quinoxalinedione-based ligand is used as antenna ligand to sensitize the emission of lanthanide cations. The lowest triplet state energy level of the ligand in the nitrate complex matches better to the resonance level of Eu(III) and Sm(III) than Tb(III) and Dy(III) ion. The f-f fluorescence is induced in the Eu3+ and Sm3+ complexes by exciting into the π-π* absorptions of the ligand in the UV. Furthermore, the crystal structures of a novel binuclear complex [Nd2L2(NO3)6(H2O)2]·H2O has been determined by single-crystal X-ray diffraction. The binuclear [Nd2L2(NO3)6(H2O)2]·H2O complex units are linked by the intermolecular hydrogen bonds and π-π interactions to form a two-dimensional (2-D) layer supramolecule.  相似文献   

11.
Radical pairs were generated in reversed micelles by laser excitation of zinc tetraphenylporphyrin-viologen linked compounds (ZPnV) with a polymethylene spacer (?(CH2)n?; n=4, 6 and 8). The optical transient-absorption and chemically induced dynamic electron polarization (CIDEP) spectra indicated that paramagnetic lanthanide ions invariably accelerated the decay process of the radical pairs at 0.3 T. The typical E/A/E/A spectra for the ZP6V and ZP8V systems were explained as due to S-T0 mixing and electron-spin relaxation between Zeeman-splitted triplet sublevels. In the case of ZP4V, the paramagnetic Gd3+ ion accelerated the radical decay process even at zero-magnetic field, and strong emissive CIDEP spectra evolved with the elapsed time after laser excitation. Appreciable contribution of S-T level crossing in the radical decay process was suggested to account for the novel features of the ZP4V system.  相似文献   

12.
A series of heterometallic 3d–Gd3+ complexes based on a lanthanide metalloligand, [M(H2O)6][Gd(oda)3] ? 3 H2O [M=Cr3+ ( 1‐Cr )] (H2oda=2,2′‐oxydiacetic acid), [M(H2O)6][MGd(oda)3]2 ? 3 H2O [M=Mn2+ ( 2‐Mn ), Fe2+ ( 2‐Fe ) and Co2+ ( 2‐Co )], and [M3Gd2(oda)6(H2O)6] ? 12 H2O [M=Ni2+ ( 3‐Ni ), Cu2+ ( 3‐Cu ), and Zn2+ ( 3‐Zn )], are reported. Magnetic and heat‐capacity studies revealed a significant impact on the magnetocaloric effect depending on the anisotropy of the 3d transition metal ions, as confirmed by comparison of the observed maximum values of ?ΔSm between complexes 2‐Co and 1‐Cr . In these two complexes, the 3d metal ions have the same spin (S=3/2 for Co2+ and Cr3+ ions), and the theoretical calculation suggested a larger ?ΔSm value for 2‐Co (47.8 J K?1 kg?1) than 1‐Cr (37.5 J K?1 kg?1); however, the significant anisotropy of Co2+ ions in 2‐Co , which can result in smaller effective spins, gives a smaller value of ?ΔSm for 2‐Co (32.2 J K?1 kg?1) than for 1‐Cr (35.4 J K?1 kg?1) at ΔH=9 T.  相似文献   

13.
《中国化学快报》2023,34(9):108157
This work reported the lanthanide ion (Gd3+) doped tungsten trioxide (Gd-WO3) nanocrystal for remarkable promoted photocatalytic degradation of organic pollutants and simultaneous in-situ H2O2 production. With doped lanthanide ion (Gd3+), Gd-WO3 showed a much broad and enhanced solar light absorption, which not only promoted the photocatalytic degradation efficiency of organic compounds, but also provided a suitable bandgap for direct reduction of oxygen to H2O2. Additionally, the isolated Gd3+ on WO3 surface can efficiently weaken the *OOH binding energy, increasing the activity and selectivity of direct reduction of oxygen to H2O2, with a rate of 0.58 mmol L−1 g−1 h−1. The in-situ generated H2O2 can be subsequently converted to OH based on Fenton reaction, further contributed to the overall removal of organic pollutants. Our results demonstrate a cascade photocatalytic oxidation-Fenton reaction which can efficiently utilize photo-generated electrons and holes for organic pollutants treatment.  相似文献   

14.
The interactions between a series of lanthanide cations (Ln3+) and a methyl-substituted cucurbit[6]uril derived from 3α-methyl-glycoluril (SHMeQ[6]) in the presence of [CdCl4]2 ? as a structure-directing agent in aqueous HCl solutions (6.0 mol·L ? 1) have been investigated. The formation of ionic radius-dependent complexes, the crystal structures of six of which have been obtained, shows the recognition ability of SHMeQ[6] towards lanthanide cations. For example, SHMeQ[6] forms molecular capsule-like complexes with the two lightest lanthanide cations, La3+ and Ce3+; molecular pairs with Nd3+, Sm3+, Eu3+ and Gd3+, and no solid crystals are formed with the heavier lanthanides.  相似文献   

15.
A derivative of H5ttda (=3,6,10‐tris(carboxymethyl)‐3,6,10‐triazadodecanedioic acid=N‐{2‐[bis(carboxymethyl)amino]ethyl}‐N‐{3‐[bis(carboxymethyl)amino]propyl}glycine), H5[(S)‐4‐Bz‐ttda] (=(4S)‐4‐benzyl‐3,6,10‐tris(carboxymethyl)‐3,6,10‐triazadodecanedioic acid=N‐{(2S)‐2‐[bis(carboxymethyl)amino]‐3‐phenylpropyl}‐N‐{3‐[bis(carboxymethyl)amino]propyl}glycine; 1 ) carrying a benzyl group was synthesized and characterized. The stability constants of the complexes formed with Ca2+, Zn2+, Cu2+, and Gd3+ were determined by potentiometric methods at 25.0±0.1° and 0.1M ionic strength in Me4NNO3. The observed water proton relaxivity value of [Gd{(S)‐4‐Bz‐ttda}]2− was constant with respect to pH changes over the range pH 4.5–12.0. From the 17O‐NMR chemical shift of H2O induced by [Dy{(S)‐4‐Bz‐ttda}]2− at pH 6.80, the presence of 0.9 inner‐sphere water molecules was deduced. The water proton spin‐lattice relaxation rate for [Gd{(S)‐4‐Bz‐ttda}]2− at 37.0±0.1° and 20 MHz was 4.90±0.05 mM −1 s−1. The EPR transverse electronic relaxation rate and 17O‐NMR transverse‐relaxation time for the exchange lifetime of the coordinated H2O molecule (τM), and 2H‐NMR longitudinal‐relaxation rate of the deuterated diamagnetic lanthanum complex for the rotational correlation time (τR) were thoroughly investigated, and the results were compared with those previously reported for the other lanthanide(III) complexes. The exchange lifetime (τM) for [Gd{(S)‐4‐Bz‐ttda}]2− (2.3±1.3 ns) was significantly shorter than that of the [Gd(dtpa)(H2O)]2− complex (dtpa=diethylenetriaminepentaacetic acid). The rotational correlation time τR for [Gd{(S)‐4‐Bz‐ttda}]2− (70±6 ps) was slightly longer than that of the [Gd(dtpa)(H2O)]2− complex. The marked increase of relaxivity of [Gd{(S)‐4‐Bz‐ttda}]2− mainly resulted from its longer rotational time rather than from its fast water‐exchange rate. The noncovalent interaction between human serum albumin (HSA) and the [Gd{(S)‐4‐Bz‐ttda}]2− complex containing the hydrophobic substituent was investigated by measuring the solvent proton relaxation rate of the aqueous solutions. The association constant (KA) was less than 100 M −1, indicating a weaker interaction of [Gd{(S)‐4‐Bz‐ttda}]2− with HSA.  相似文献   

16.
The temperature- and pressure-dependent equilibria for the addition of an extra N, N-dimethylforrnamide (DMF) or trimethylphosphate (TMP) ligand onto [Nd (DMF)8]3+- and [Nd(TMP)6]3+-species respectively have been measured by visible spectrophotometry. Complementary NMR. studies on other lanthanide ions show a gradual shift in preference for the lower coordination number across the lanthanide series.  相似文献   

17.
The complexation of lanthanide ions (Y3+, La3+, Ce3+, Pr3+, Nd3+, Sm3+, Gd3+, Tb3+, and Dy3+) with 3-[(1R)-1-hydroxy-2-(methylamino)ethyl]phenol hydrochloride was studied at different temperatures and different ionic strengths in aqueous solutions by Irving-Rossotti pH titration technique. Stepwise calculation, PKAS and BEST Fortran IV computer programs were used for determination of proton-ligand and metal-ligand stability constants. The formation of species like MA, MA2, and MA(OH) is considered in SPEPLOT. Thermodynamic parameters of complex formation (ΔG, ΔH, and ΔS) are also evaluated. Negative ΔG and ΔH values indicate that complex formation is favourable in these experimental conditions. The stability of complexes is also studied at in different solvent-aqueous (vol/vol). The stability series of lanthanide complexes has shown to have the “gadolinium break.” Stability of complexes decreases with increase in ionic strength and temperature. Effect of systematic errors like effect of dissolved carbon dioxide, concentration of alkali, concentration of acid, concentration of ligand and concentration of metal have also been explained.  相似文献   

18.
Four salen‐type lanthanide(III) coordination polymers [LnH2L(NO3)3(MeOH)x]n [Ln = La ( 1 ), Ce ( 2 ), Sm ( 3 ), Gd ( 4 )] were prepared by reaction of Ln(NO3)3 · 6H2O with H2L [H2L = N,N′‐bis(salicylidene)‐1,2‐cyclohexanediamine]. Single‐crystal X‐ray diffraction analysis revealed that H2L effectively functions as a bridging ligand forming a series of 1D chain‐like polymers. The solid‐state fluorescence spectra of polymers 1 and 2 emit single ligand‐centered green fluorescence, whereas 3 exhibits typical red fluorescence of SmIII ions. The lowest triplet level of ligand H2L was calculated on the basis of the phosphorescence spectrum of GdIII complex 4 . The energy transfer mechanisms in the lanthanide polymers were described and discussed.  相似文献   

19.
Four carboxylate‐bridged GdIII complexes ( 1 – 4 ) with 1D/2D structures have been synthesized by using the hydrothermal reaction of Gd2O3 with various carboxylate ligands. Compounds 1 and 2 contained the same [2n] GdIII? OH ladders, but with different crystallographically independent GdIII ions, whilst the structures of compounds 3 and 4 were composed of [Gd43‐OH)2(piv)8(H2O)2]2+ units and 1D ladder GdIII chains, respectively. Antiferromagnetic interactions occurred in compounds 1 – 3 , owing to their small Gd? O? Gd angles, whereas ferromagnetic coupling occurred in compound 4 , in which the Gd? O? Gd angles were larger. These complexes exhibited a distinct magnetocaloric effect (MCE), which was affected by their different magnetic densities and exchange interactions. Among these compounds, complex 4 presented the largest MCE (?ΔSmmax=43.6 J kg?1 K?1), the lowest Mw/NGd ratio (the highest magnetic density), and weak ferromagnetic coupling. Therefore, a lower Mw/NGd ratio and weaker exchange interactions (a smaller absolute value of θ) between GdIII ions resulted in a larger MCE for the GdIII complexes.  相似文献   

20.
The novel tetrameric gadolinium(III) compound [Gd4(OH)4(CF3COO)8(H2O)4] · 2.5 H2O was synthesized and structurally characterized by X‐ray crystallography. The Gd3+ ions are bridged by hydroxide ions and carboxylate groups to tetramers with Gd3+‐Gd3+ distances between 384.2(2) and 388.1(2) pm. The compound crystallizes in the monoclinic space group C2/c (Z = 4). The magnetic behaviour of [Gd4(OH)4(CF3COO)8(H2O)4] · 2.5 H2O was investigated in the temperature range of 2 to 300 K. The magnetic data of this compound indicate antiferromagnetic interactions (Jex = ?0.0197 cm?1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号