首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The asymmetric distributions of surface optical second harmonic generation (SHG) through azimuthally angular scans of (111) silicon wafers on which thin silver films were deposited, have been detected with different polarizations of output beams. On account of the inversion symmetry of silicon crystals, the SHG for the Ag/Si system is mainly contributed by the silver film and the silicon surface. In this work, we found that the interface strain implies an asymmetric intensity variation of SHG with respect to the surface azimuthal angles as an ultra thin Ag film is deposited on silicon wafers. This asymmetric behavior is prominent as the deposited silver layer is heated so that the continuous film aggregates to become granular nanoparticles. Similar changes of the surface asymmetric SHG are observed for a bare Si wafer imposed upon by an external force.  相似文献   

2.
Formation and aggregation of photolytic silver nanoparticles at the surface of silver salt of carboxymethylcellulose films (CMCAg films) have been investigated. Detailed X-ray photoelectron spectroscopy (XPS) study and field emission type scanning electron microscopy (FE-SEM) observation have been carried out to characterize silver nanoparticles at the film surface. When the CMCAg films were irradiated with UV light in wet air at room temperature for 30–60 min, silver nanoparticles of ca. 10 nm size were formed at the irradiated surface. According to the FE-SEM observation, the growth of the particle diameter and aggregation of nanoparticles took place after prolonged irradiation, and finally, the irradiated side of the film surface was densely covered with the silver nanoparticles of ca. 35 nm size. Chemical composition analysis by the XPS measurements has confirmed the increase in the atomic concentration of silver with irradiation time. It is suggested that silver atoms and clusters can move in the film and precipitate at the irradiated surface.  相似文献   

3.
通过真空热蒸镀和高温退火法制备的金属纳米复结构SERS基底因其具有良好的灵敏度,稳定性和均匀性而广泛应用于各种检测领域。石墨烯具有优良的光学特性,化学惰性以及荧光猝灭效应,自被发现以后一直是光学微纳器件中的一大热门材料。石墨烯还可以有效分离探针分子与基底,优化拉曼光谱质量,因此广泛应用于SERS研究领域。同时石墨烯可以有效隔绝金属纳米结构与空气的直接接触防止金属纳米结构被氧化而失效,也可以催化氧化银的脱氧反应提升SERS基底的稳定性。在石墨烯/金属纳米复合结构SERS基底在制备过程中,受到金属膜的种类、厚度参数、气体种类、退火时间、温度和气压等因素的影响,制备的金属纳米结构形貌存在很大差异。石墨烯的拉曼光谱会因为应力和掺杂导致其拉曼特征峰出现不同程度的增强,移动以及展宽。(1)采用真空热蒸镀法和高温退火法制备石墨烯/银纳米复合结构SERS基底,建立了金属纳米颗粒成型机理的模型,从孔洞形成、孔洞生长、金属纳米岛形成三个阶段分析了金属纳米粒子的成型过程,实验沉积5,10,15以及20 nm的银薄膜,退火后银纳米结构的覆盖率分别为~35.1%,~24.4%,~30%以及~96.0%,在沉积银薄膜样品上使用湿法转移石墨烯,退火处理后发现石墨烯阻止了银纳米岛的形成过程;(2)理论分析了银薄膜厚度、石墨烯覆盖对复合结构的几何形貌、拉曼增强特性的影响,石墨烯由于其具有较高的杨氏模量和表面张力,可以有效抑制退火过程中银薄膜向纳米粒子转变的过程,从而实现对复合结构表面形貌的调控;(3)实验研究了银纳米粒结构形貌对石墨烯拉曼光谱的影响,并理论分析了蒸镀不同银薄膜厚度的样品对石墨烯的拉曼光谱增强,移动以及展宽影响的具体原因。  相似文献   

4.
We report the deposition of thin film of silver (Ag) nanoparticles by wet chemical method. The as-synthesized Ag nanoparticles have been characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), X-ray energy dispersive spectroscopy (EDS), field emission transmission electron microscopy (FETEM) and high-resolution TEM (HRTEM), UV-vis spectroscopy and thermogravimetric-differential thermal analysis (TG-DTA) respectively. FESEM image indicates that the silver film prepared on the quartz substrate is smooth and dense. XRD pattern reveals the face-centered cubic (fcc) structure of silver nanoparticles. EDS spectrum indicates that samples are nearly stoichiometric. From TEM analysis, it is found that the size of high purity Ag nanoparticles is ranging from 10 to 20 nm with slight agglomeration. Absorption in UV-vis region by these nanoparticles is characterized by the features reported in the literature, namely, a possible Plasmon peak at ∼403 nm. Optical absorbance spectra analysis reveals that the Ag film has an indirect band structure with bandgap energy 3.88 eV. TGA/DTA studies revealed that a considerable weight loss occurs between 175 and 275 °C; and the reaction is exothermic.  相似文献   

5.
The optical properties of a composite material consisting of a thin polymer film, which is activated by semiconductor CdSe/ZnS quantum dots (QDs) and silver nanoparticles, on a transparent dielectric substrate have been investigated. It is revealed that the presence of silver nanoparticles leads to an increase in the QD absorption (by a factor of 4) and in the fluorescence intensity (by a factor of 10), whereas the fluorescence time drops by a factor of about 10. Excitation of the composite medium by a pulsed laser is found to result in narrowing of the fluorescence band and a sublinear dependence of its intensity on the pulse energy. In the absence of silver nanoparticles, the fluorescence spectrum of QDs is independent of the excitation-pulse energy density, and the fluorescence intensity depends linearly on the pulse energy in the entire range of energy densities, up to 75 mJ/cm2.  相似文献   

6.
Polyelectrolyte multilayer (PEM) films offer a method to functionalize substrates with specific properties that enable the films to be used for a variety of purposes. Desirable qualities of PEM films can include mechanical strengths, ease of preparations, flexibility, and their abilities to have their properties tailored to suit a particular process. We present a simple method to fabricate a class of PEM films that incorporate cubic silsesquioxane nanoparticles (CSSQ). Through a spin self-assembly (SSA) process, a hybrid multilayered film with two-components, namely, poly(styrene sulfonate) (PSS) and octaammonium cubic silsesquioxane (CSSQ) nanoparticle have been fabricated. The formation of this multilayer film is further verified by ellipsometry, contact angle studies, and atomic force microscopy (AFM). The water contact angle and ellipsometric measurements exhibit that the (PSS/OA-CSSQ) films are deposited onto the substrate. The surface topography of the deposited bilayers of PSS/OA-CSSQ film appears to be uniformly distributed with extremely small granules but the film uniformity of the granular surface is diminished and clusters of granules are observed at above 5 bilayers due to the aggregation of the OA-CSSQ nanoparticles.  相似文献   

7.
The giant injection magnetoresistive effect has been observed in a granulated Co/SiO2 film on a semiconductor GaAs substrate in a narrow temperature range near T = 300 K. According to the existing theory, the nature of the effect is due to the structure and physical problems of the interface layer. The spatial distribution of cobalt nanoparticles in the bulk of the Co/SiO2 granular film and at the granular film/semiconductor substrate (GF/SS) interface has been investigated by the reflectometry and small-angle scattering of synchrotron radiation in the grazing geometry. It has been shown that the characteristic average distance between the cobalt granules in the bulk of the film is 7.3 nm. At the same time, the average distance between the granules with a vertical size of about 7.5 nm at the GF/SS interface is 32 nm. The experimental data indicate the low concentration of cobalt at the interface and the point character of the contact of the main bulk of the Co/SiO2 film with the GaAs substrate through a relatively diluted layer of ferromagnetic cobalt granules.  相似文献   

8.
Granular silver films deposited on a thin insulating film of amorphous hydrogenated carbon (a-C:H) and transparent conducting electrode (polycrystalline indium tin oxide (ITO) layer) have been investigated by spectroscopy and microscopy methods. The extinction spectra of silver films on the surface of these materials are found to be significantly different. An annealing of silver films causes a blue shift of the peak of plasmon resonance band in the spectrum of silver nanoparticles: by 16 nm on the a-C:H surface and by 94 nm on the ITO surface. Silver films on the surface of a-C:H films are characterized by a narrower band in the extinction spectrum, which is peaked at 446 nm. The changes observed in the optical density of Ag films are related to the change in size and area of nanoparticles. The results of spectral studies of Ag films are in agreement with the data on the nanostructure obtained by scanning electron microscopy and statistical image processing. The spectra of granular silver films are shown to correlate well with the nanoparticle distribution function over the film area.  相似文献   

9.
Ag@SnO2 core-shell nanoparticles dispersed in poly-(vinyl) alcohol films were fabricated on glass substrate by employing a dip-coating technique. Synthesis of Ag@SnO2 nanoparticles with core-shell morphology is carried out by a soft-chemical technique in aqueous phase at 60°C. Formation of core-shell structure is monitored by the red-shift of the surface plasmon band of Ag nanoparticles (from 390 to 410 nm) in the UV-visible spectrum. These nanoparticles are deposited on the glass substrate. The structure and morphology of these films were investigated by X-ray diffraction technique and field-emission transmission electron microscopy, respectively. Optical properties of these pseudo-solids were studied by UV-visible spectroscopy. Surface plasmon spectrum of the core-shell nanoparticles film remained unaltered with increase in the number of layers. However, silver nanoparticles films have shown peak broadening and development of additional peaks with increase in the number of layers. Our investigations showed that the surface plasmon band of the silver nanoparticles could be preserved by controlled deposition of the tin dioxide shell.  相似文献   

10.
张瑜娟  朱贤方 《光谱实验室》2010,27(4):1579-1582
首先控制聚苯乙烯纳米球(PS球)乳液在基片上的干燥温度,采用自组装方法,使用单一粒径的PS球制备出单层的PS球亚稳态正方排列结构模板。然后,在模板上通过磁控溅射法沉积一层银膜。利用纳米球光刻技术,去掉PS球模板得到二维正方点阵排列的准正方形银纳米颗粒阵列结构。  相似文献   

11.
表面增强拉曼(SERS)作为一种分析手段,具有高灵敏度、高选择性、高重复性、非破坏性等优点,在过去的几十年中,被广泛应用在成分检测、环境科学、生物医药及传感器等领域。其中以金、银等贵金属纳米颗粒薄膜在表面增强拉曼(SERS)活性基底方面得到了更为广泛的应用。SERS技术一个关键的因素是如何制设计并备具有大面积、高增强能力及高重复性、可循环使用的SERS基底。通常,贵金属纳米颗粒规则阵列结构的单元颗粒电磁增强特性及其颗粒间的电磁耦合增强特性的综合作用可大力提升SERS基底的探测性能。然而,利用传统微纳米加工方法如光刻、电子束光刻等方法制备得到的贵金属纳米阵列结构的表面粗糙度不够理想。结合光刻与化学置换方法制备金纳米颗粒四方点阵列孔洞结构,并研究其作为SERS基底的电磁增强特性。具体研究利用光刻法在硅衬底上制备了规则排列的四方点阵列孔洞结构,用磁控溅射在其表面镀上金属铁膜;接着在衬底上旋涂浓度为1.893 8 mol·L-1的氯金酸液膜,在孔洞内铁和氯金酸发生置换反应,进而孔洞生成金纳米颗粒,最终得到金纳米颗粒四方点阵SERS活性基底。采用罗丹明6G(R6G)分子作为探测分子测试不同金纳米颗粒阵列结构基底的SERS谱。实验结果表明,随着化学置换反应时间的延长,金纳米颗粒排列更加紧凑有序,SERS谱增强性能更好。  相似文献   

12.
The metal-enhanced fluorescence is measured with different thickness of emission film. Silver nanoparticles are immobilized on glass slide by chemical self-assembly method. Rhodamine B molecules are dispersed in the polymer matrix of Poly(methyl methacrylate) (PMMA), then spin coated on prepared silver particles substrate with different thickness from 15 nm to 70 nm. The enhanced fluorescence is observed depending on the thickness of emission film since the average distance between rhodamine B molecules and silver nanoparticles is altered by the PMMA matrix. The 5-fold enhancement is attained. The experiment was explained qualitatively by an integral fluorescence enhancement.  相似文献   

13.
Ya Yan 《Applied Surface Science》2007,253(10):4677-4679
A simple route to the high quality Ag film was developed at room temperature by using Ag nanoparticles stabilized by polyvinylpyrrolidone (PVP) as Ag source. The scanning electron microscopy (SEM) images indicate that the silver film prepared on the quartz substrate is smooth and dense. Meanwhile, the X-ray diffraction (XRD) of the film shows a face-centered cubic (fcc) phase of Ag.  相似文献   

14.
以质子酸功能化离子液体1-丁基-3-甲基咪唑磷酸二氢盐([Bmim]H2PO4)为反应介质和表面活性剂,采用简单的化学还原法制备了具有形状各向异性的块状银纳米颗粒。通过X射线衍射(XRD)、扫描电镜(SEM)、紫外-可见(UV-Vis)吸收光谱等一系列手段对其结构、形貌及光吸收特性进行了表征。结果表明,所制备的银纳米块具有立方结构,其平均横向尺寸约为30 nm,在硅片上自组装形成密堆积结构的多层膜。以1,2-二(4-吡啶基)乙烯(BPE)作为探针分子,研究所制备银纳米颗粒的表面增强拉曼散射(SERS)活性。结果表明所制的银纳米颗粒是较好的SERS基底,具有良好的增强效果,痕检能力及稳定性。对BPE分子的最低检测浓度可低至10-9mol·L-1,而且保存了90天后,其检测灵敏度没有显著的降低。  相似文献   

15.
采用热蒸镀的方法直接在多孔氧化铝(porous anodic alumina,PAA)模板上蒸镀几微米的银膜,然后在HCl溶液中溶解掉模板,得到表面具有纳米尺度规则结构的银膜作为表面增强拉曼散射(surface-en-hanced Raman spectra,SERS)基底,并在该基底上测量了吡啶溶液(0.01 mol.L-1)的增强拉曼光谱,发现平均增强因子大于105。与直接在载玻片上蒸镀的银膜相比,具有纳米尺度规则结构银膜的增强效果提高了30倍。改变激发光功率测量吡啶的拉曼光谱,和普通拉曼散射一样,增强拉曼光谱的峰值强度随激发光强度线性变化,并在该基底上测量了三聚氰胺的拉曼光谱,发现在1 mW的激发功率下对于三聚氰胺的检出限为2.5 mg.L-1。  相似文献   

16.
Abstract

A micro-structured gold surface, consisting of a periodic square–based anti–pyramidal array (Klarite) with a smooth boundary surface on which silver nanoparticles (diameter: 60?nm) were deposited, produced an active surface enhanced Raman scattering substrate. With p-aminothiophenol as a probe molecule, the Raman activity of the micro–structured surface was compared before and after deposition of the silver nanoparticles. Experimental results show that the Raman spectra on the silver/p-aminothiophenol/Klarite structure is stronger than that on the silver/p-aminothiophenol/gold film and the Raman spectra on the silver/p-aminothiophenol/gold film is stronger than that on silver/p-aminothiophenol, p-aminothiophenol/Klarite structure, p-aminothiophenol/gold film, which is confirmed by numerical simulations. A similar result is obtained with crystal violet as test molecule.  相似文献   

17.
The influence of ethanol and acetic acid on the structure and optical properties of silver granular films formed by physical vapor deposition in a high vacuum on sapphire substrates was studied via optical spectroscopy and scanning electron microscopy. It was found that irregularly shaped oblate silver grains transforms into almost spherical nanoparticles. Simultaneously, optical extinction spectra shift in the short wavelength range and become narrower. The same effect was observed when liquid crystal was poured on such film. It was noticed, that nanoparticle shapes change under the action of these fluids in the same way as in the process of thermal annealing. This analogy suggests that the observed effects could be explained by acceleration of atomic diffusion over the islet surfaces. It was noticed also that the resistance of thick granular films changes abruptly several minutes after pouring such film with ethanol. This jump of resistance is also very similar to the resistance jump observed previously in the case of annealing.  相似文献   

18.
The design and synthesis of a tailor‐made surface‐enhanced Raman scattering (SERS) active film that is fabricated to be removable from the surface of an artwork under study following effective measurements is detailed. It is shown that silver nanoparticles prepared by green chemical reduction with glucose can be effectively doped into a methylcellulose (MC) matrix for the formation of a gel, which can be subsequently applied to a minute area (ca 1–1.5 mm) of an artwork without posing a threat to its integrity. Studies have been aimed at characterizing this film's chemical and physical properties, with regard to the stability of the nanoparticles dispersed within the MC, the ease of application of the viscous gel, its speed of drying and the transparency of the dry film for SERS measurements. Importantly, results have led to reproducible SERS enhancements of the order 103–104 for studies carried out on reference laboratory dye components and unvarnished mock‐paintings. Techniques including optical and scanning electron microscopy were used to monitor the drying of the film and its resulting morphology, as well as to map the distribution of silver nanoparticles in the film so as to account for any visual modification to the underlying surface upon film removal. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
A comparative study of the solid substrates used in surface‐enhanced Raman scattering (SERS) based immunoassay is made in this paper. Five different substrates were prepared and divided into two groups with and without SERS activity. They are (1) a poly‐L ‐lysine slide, (2) a glutaraldehyde (GA)‐aminosilane slide, (3) a substrate assembled with silver nanoparticles, (4) a substrate assembled with silver nanoparticles and functionalized with GA–aminosilane and (5) a substrate assembled with gold nanoparticles, of which the first two are substrates are without SERS activity and the latter three are with SERS activity because of the existence of the metallic nanoparticles. The SERS experimental results show that the immunoassay performed on an SERS‐active substrate is more effective than that employing the inactive substrate. Among the inactive substrates, the GA–aminosilane slide with a better ability for antibody immobilization leads to a more sensitive immunoassay than the poly‐L ‐lysine slide. Moreover, for SERS‐based immunoassay, the substrate with assembled silver nanoparticles has an advantage of higher SERS enhancement capacity over the substrate assembled with gold nanoparticles. This work indicates that SERS‐active substrates play important and positive roles in sensitive SERS‐based immunoassay. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we report the spatially controlled dissolution of silver nanoparticles in irradiated SiO2 sol-gel films. The Ag nanoparticles have been formed in the sol-gel solution before the film deposition by adding Triton and ascorbic acid and also after the film deposition using a heat treatment at 700 °C for few minutes or at 550 °C for 6 h in reducing atmosphere. Using a spectrometer, a new view white light interferometer and a micro-thermal analyzer, we demonstrate that the silver nanoparticles can be dissolved using a continuous black ray UV lamp or with a near-infrared (NIR) femtosecond laser, due to a significantly increase in the local temperature. We confirm that the micro-thermal analyzer can be used as a new tool to study the dissolution of metallic nanoparticles in thin film if located at the surface of the films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号