首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 647 毫秒
1.
采用等温溶解平衡法研究了五元体系Na+, Mg2+//Cl-, SO42-, NO3-, H2O在298.16 K下氯化钠饱和平衡体系的溶解度, 获得了相应的投影干盐图、氯图和水图. 研究结果表明, 在298.16 K下氯化钠饱和时, 该五元体系投影干盐图由8个二盐共饱和的双变面、13条三盐共饱的单变线和6个四盐共饱的零变点构成, 存在两种复盐, 8个二盐共饱双变面分别对应于NaCl+NaNO3, NaCl+Na2SO4, NaCl+MgCl2·6H2O, NaCl+MgSO4·Na2SO4·4H2O, NaCl+Mg(NO3)2·6H2O, NaCl+NaNO3·Na2SO4·2H2O, NaCl+MgSO4·7H2O 和NaCl+MgSO4·(1—6)H2O. 讨论了该相图在新疆硝酸盐矿开发利用过程中的应用.  相似文献   

2.
High signal-to-noise ratio (S/N) Raman spectra of (NH(4))(2)SO(4) droplets deposited on a quartz substrate were obtained from dilute to supersaturated states upon decreasing the relative humidity (RH). When the molar water-to-solute ratio (WSR) decreases from 16.8 to 3.2, the v(1)-SO(4)(2-) band changes very little, that is, showing a red-shift of only about 1 cm(-1) (from 979.9 to 978.8 cm(-1)) and an increase of its full width at half-maximum (fwhm) from 8.3 to 9.8 cm(-1). Other vibration modes such as v(2)- and v(4)-SO(4)(2-) bands appear almost constantly at 452 and 615 cm(-1). Such kind of a spectroscopic characteristic is different from previous observation on other cations, indicating that the interactions between SO(4)(2-) and NH(4)+ in supersaturated states are similar to those between SO(4)(2-) and H(2)O in dilute states. After fitting the Raman spectra with Gaussian functions in the spectral range of 2400-4000 cm(-1), we successfully extracted six components at positions of 2878.7, 3032.1, 3115.0, 3248.9, 3468.4, and 3628.8 cm(-1), respectively. The first three components are assigned to the second overtone of NH(4)+ umbrella bending, the combination band of NH(4)+ umbrella bending and rocking vibrations, and the NH(4)+ symmetric stretching vibration, while the latter three components are from the strongly, weakly, and slightly hydrogen-bonded components of water molecules, respectively. With a decrease of the RH, the proportion of the strongly hydrogen-bonded components increases, while that of the weakly hydrogen-bonded components decreases in the droplets. The coexistence of strongly, weakly, and slightly hydrogen-bonded water molecules must hint at a similar hydrogen-bonding network of NH(4)+, SO(4)(2-), and H(2)O to that of pure liquid water in supersaturated (NH(4))(2)SO(4) droplets.  相似文献   

3.
Supersaturated MgSO4 aerosols and dilute MgSO4 solutions were studied by FTIR spectroscopic techniques (i.e., aerosol flow tube (AFT) and attenuated total reflection (ATR)). The hygroscopic properties of MgSO4 aerosols were investigated with results in good agreement with previous measurements by a scanning electrodynamic balance (SEDB). Well-defined spectral evolutions with changing relative humidity (RH) for the v3 band of SO4(2-) and the water O-H stretching envelope could be directly related to the observed hygroscopic properties of MgSO4 aerosols. When the RH decreased from approximately 55 to approximately 40%, the v1 band of SO4(2-) in supersaturated MgSO4 aerosols was observed to transform from a sharp peak at approximately 983 cm(-1) into a wide band at approximately 1005 cm(-1). The sharp peak at approximately 983 cm(-1) was mainly assigned to such associated complexes of Mg2+ and SO4(2-) as double solvent-separated ion pairs (2SIPs), solvent-shared ion pairs (SIPs), and simple contact ion pairs (CIPs) in supersaturated MgSO4 aerosols, while the wide band at approximately 1005 cm(-1) was due to polymeric CIPs chains, probably the main component of gels formed in MgSO4 aerosols at low RHs. Relating to this v1 band transformation, the peak position of the v(3) band was first shown to be a sensitive indicator of CIPs formation, spanning across approximately 40 cm(-1) on the formation of polymeric CIPs chains, which could also be supported by aerosol composition analysis in the form of water-to-solute molar ratios (WSR). In the water O-H stretching envelope, the absorbance intensities at 3371 and 3251 cm(-1) were selected to represent contributions from weak and strong hydrogen bonds, respectively. The absorbance intensity ratio changing with RH of 3371 to 3251 cm(-1) could be related to the previous observations with the v1 and v3 bands of SO4(2-). As a result, the formation of CIPs with various structures in large amounts was supposed to significantly weaken hydrogen bonds in supersaturated MgSO4 aerosols, while 2SIPs and SIPs were not expected to have similar effects even when occurring in abundance. In comparison with MgSO4 aerosols, the peak positions of the v3 band of SO4(2-) in artificial seawater aerosols implied that the MgSO4 component should be contained as gels or concentrated solutions in the fissures of microcrystals of sea salts for freshly formed seawater aerosols at low RHs.  相似文献   

4.
A semiempirical model is presented that predicts surface tensions (σ) of aqueous electrolyte solutions and their mixtures, for concentrations ranging from infinitely dilute solution to molten salt. The model requires, at most, only two temperature-dependent terms to represent surface tensions of either pure aqueous solutions, or aqueous or molten mixtures, over the entire composition range. A relationship was found for the coefficients of the equation σ = c(1) + c(2)T (where T (K) is temperature) for molten salts in terms of ion valency and radius, melting temperature, and salt molar volume. Hypothetical liquid surface tensions can thus be estimated for electrolytes for which there are no data, or which do not exist in molten form. Surface tensions of molten (single) salts, when extrapolated to normal temperatures, were found to be consistent with data for aqueous solutions. This allowed surface tensions of very concentrated, supersaturated, aqueous solutions to be estimated. The model has been applied to the following single electrolytes over the entire concentration range, using data for aqueous solutions over the temperature range 233-523 K, and extrapolated surface tensions of molten salts and pure liquid electrolytes: HCl, HNO(3), H(2)SO(4), NaCl, NaNO(3), Na(2)SO(4), NaHSO(4), Na(2)CO(3), NaHCO(3), NaOH, NH(4)Cl, NH(4)NO(3), (NH(4))(2)SO(4), NH(4)HCO(3), NH(4)OH, KCl, KNO(3), K(2)SO(4), K(2)CO(3), KHCO(3), KOH, CaCl(2), Ca(NO(3))(2), MgCl(2), Mg(NO(3))(2), and MgSO(4). The average absolute percentage error between calculated and experimental surface tensions is 0.80% (for 2389 data points). The model extrapolates smoothly to temperatures as low as 150 K. Also, the model successfully predicts surface tensions of ternary aqueous mixtures; the effect of salt-salt interactions in these calculations was explored.  相似文献   

5.
Mg(2+), Na(+), and SO(4)(2-) are common ions in natural systems, and they are usually found in water bodies. Precipitation processes have great importance in environmental studies because they may be part of complex natural cycles; natural formation of atmospheric particulate matter is just one case. In this work, Na(2)Mg(SO(4))(2)·5H(2)O (konyaite), Na(6)Mg(SO(4))(4) (vanthoffite), and Na(12)Mg(7)(SO(4))(13)·15H(2)O (loeweite) were synthesized and their Raman spectra reported. By slow vaporization (at 20 °C and relative humidity of 60-70%), crystallization experiments were performed within small droplets (diameter ≤ 1-2 mm) of solutions containing MgSO(4) and Na(2)SO(4), and crystal formations were studied by Raman spectroscopy. Crystallization of Na(2)Mg(SO(4))(2)·4H(2)O (bloedite) was observed, and the formation of salt mixtures was confirmed by Raman spectra. Bloedite, konyaite, and loeweite, as well as Na(2)SO(4) and MgSO(4)·6H(2)O, were the components found to occur in different proportions. No crystallization of Na(6)Mg(SO(4))(4) (vanthoffite) was observed under the crystallization condition used in this study.  相似文献   

6.
Raman spectroscopy was used to study structural changes, in particular, the formation of contact-ion pairs in supersaturated aqueous NaCH(3)COO and Mg(CH(3)COO)(2) droplets at ambient temperatures. The single droplets levitated in an electrodynamic balance (EDB), lost water, and became supersaturated when the relative humidity (RH) decreased. For NaCH(3)COO droplet the water-to-solute molar ratio (WSR) was 3.87 without solidification when water molecules were not enough to fill in the first hydration layer of Na(+), in favor of the formation of contact-ion pairs. However, the symmetric stretching vibration band (nu(3) mode) of free -COO(-) constantly appeared at 1416 cm(-1), and no spectroscopic information related to monodentate, bidentate, or bridge bidentate contact-ion pairs was observed due to the weak interactions between the Na(+) and acetate ion. On the other hand, the band of methyl deformation blue shifted from 1352 to 1370 cm(-1) (at RH = 34.2%, WSR = 2.43), corresponding to the solidification process of a novel metastable phase in the highly supersaturated solutions. With further decreasing RH, a small amount of supersaturated solution still existed and was proposed to be hermetically covered by the metastable phase of the particle. In contrast, the interaction between Mg(2+) and acetate ion is much stronger. When WSR decreased from 21.67 to 2.58 for the Mg(CH(3)COO)(2) droplet, the band of C-C-symmetric stretching (nu(4) mode) had a blue shift from 936 to 947 cm(-1). The intensity of the two new shoulders (approximately 1456 and approximately 1443 cm(-1)) of the nu(3) band of free -COO(-) at 1420 cm(-1) increased with the decrease of WSR. These changes were attributed to the formation of contact-ion pairs with bidentate structures. In particular, the small frequency difference between the shoulder at approximately 1443 cm(-1) and the nu(3) band of the free -COO(-) group (approximately 1420 cm(-1)) was proposed to be related to the formation of a chain structure based on the contact-ion pairs of bridge bidentate. The continuous formation of various contact-ion pairs started at higher WSR value (WSR = 15.5) greatly reduced the hygroscopic properties of Mg(CH(3)COO)(2) droplet, so that the WSR of Mg(CH(3)COO)(2) droplets was even lower than that of NaCH(3)COO in the RH range of 40-60%.  相似文献   

7.
The attenuated total reflectance-Fourier transform infrared (ATR-FTIR) difference spectra of the dilute aqueous (NH4)2SO4, Na2SO4, MgSO4, ZnSO4, NaClO4, and Mg(ClO4)2 solutions by pure water were obtained at various concentrations. In the difference spectra of aqueous (NH4)2SO4 solutions, a peak at approximately 3039 cm(-1), two shoulders at approximately 3155 and approximately 2894 cm(-1), and a peak at approximately 1445 cm(-1) were ascribed to N-H stretching and bending vibrations, respectively. A small negative peak was resolved at approximately 3660 cm(-1) in the difference spectra of (NH4)2SO4, which is the sole contribution of SO4(2-) either in the O-H stretching or in the O-H bending region. The positive peaks of the difference spectra in the O-H stretching region for Na2SO4, MgSO4, and ZnSO4 systems, which constantly appeared at approximately 3423, approximately 3136, and approximately 3103 cm(-1) respectively, were suggested to be the contribution of the interactions between metal cations (Na+, Mg2+, and Zn2+) and water molecules, especially from the first hydrated layer of the cations. In the region of 800-1200 cm(-1), the normally infrared-prohibited nu1 (SO4(2-)) band was observed as a weak peak at approximately 981 cm(-1) even at very dilute concentrations (0.10 mol dm(-3)) due to the disturbance of the water molecules hydrated with SO4(2-), even though such a feature may increasingly result from associated ions with increasing concentration. The spectra of the water molecules directly influenced by ClO4-, i.e., mostly the first layer of hydrated water, in NaClO4 and Mg(ClO4)2 solutions were obtained by subtracting the corresponding spectra of the same metal sulfate solutions at the same concentrations from the perchlorate solutions. A positive peak at approximately 3583 +/- 6 cm(-1) and a negative peak at approximately 3184 +/- 25 cm(-1) were obtained as the result of the subtraction. The positive peak was attributed to the water molecules weakly hydrogen-bonded with ClO4-, while the negative one to the reduction of water molecules with fully hydrogen-bonded five-molecule tetrahedral nearest neighbor structure on the introduction of ClO4-.  相似文献   

8.
Na+, K+, Mg2+∥Cl-, SO2-4-H2O五元体系35 ℃介稳相图研究   总被引:3,自引:0,他引:3  
研究得出(Na+, K+, Mg2+∥Cl-, SO2-4-H2O)五元体系35 ℃时的介稳溶解度数据,绘制了该体系35 ℃的介稳相图,共有9个为氯化钠所饱和的结晶区域:氯化钾、钾芒硝(3K2SO4*Na2SO4)、钾镁矾(K2SO4*MgSO4*4H2O)、钾盐镁矾(KCl*MgSO4*2.75H2O)、光卤石(KCl*MgCl2*6H2O)、白钠镁矾(Na2SO4*MgSO4*4H2O)、硫酸钠、六水硫酸镁(MgSO4*6H2O)和水氯镁石(MgCl2*6H2O). 所得35 ℃介稳相图与Vant Hoff 25 ℃稳定相图比较有较大区别:软钾镁矾(K2SO4*MgSO4*6H2O)、七水硫酸镁、五水硫酸镁及四水硫酸镁结晶区域消失,钾镁矾和钾盐镁矾结晶区域显著扩大. 所得35 ℃介稳相图与25 ℃介稳相图区别很大:软钾镁矾和七水硫酸镁结晶区域消失,同时出现了钾镁矾和钾盐镁矾的结晶区域. 在该五元体系35 ℃介稳相平衡研究中发现析出的是钾盐镁矾的低水化合物(KCl*MgSO4*2.75H2O).  相似文献   

9.
Individual Mg(NO3)2 aerosol particles deposited on a quartz substrate were investigated by confocal Raman spectroscopy. With decreasing the relative humidity (RH) from 92.0% to 1.8%, Raman spectra were obtained of Mg(NO3)2 droplets with water-to-solute molar ratios (WSRs) from 43.1 to 5.2, as well as of amorphous particles. At WSR < 6.0, contact ion pairs between Mg2+ and NO3(-) occurred abundantly, while at RHs of 2.2% and 1.8% with even lower WSRs, amorphous particles appeared with quasi-lattice structures. Two components, one at 3259.0 cm(-1) (C1) and the other at approximately 3480.0 cm(-1) (C2), were resolved for the water O-H stretching envelope through nonlinear curve fittings. The area ratio of C1 to C2, that is, A1/A2, declined with the decrease of WSR, reflecting the breakage of strong hydrogen bonds induced by the hydration of NO3(-). Curve fittings were also carried out for the water O-H stretching envelope of NaNO3 droplets. The value of A1/A2 for Mg(NO3)2 droplets was always higher than that for NaNO3 droplets at the same WSR, indicating a much stronger "structure-making" effect of Mg2+ than of Na+. In the efflorescence process, aerosol particles followed different paths of phase transition from droplets to Mg(NO3)2.6H2O or amorphous states. Reversing somewhat the phase transitions in the efflorescence process, aerosol particles dissolved into droplets with the increase of RH in the deliquescence process. Heterogeneous particles prepared by dehydrating Mg(NO3)2.6H2O were investigated by the depth profiling technique. About 15 h later, the main body of particles changed into Mg(NO3)2.2H2O, a small quantity of Mg(NO3)2.6H2O scattered around particle edges, and some particles were in amorphous states. About 10 days later, a new solid phase occurred on particle surfaces, while the interiors were still Mg(NO3)2.2H2O. With increasing the RH to approximately 11%, significant Mg(NO3)2.6H2O formed on particle surfaces, covering the interior Mg(NO3)2.2H2O.  相似文献   

10.
本文应用等温溶解平衡法,研究了Na+, K+, Mg2+//Cl-, SO42-, NO3-, H2O六元体系在25℃、氯化钠饱和时的相平衡关系,测定了溶解度数据,并绘制出相应的相图. 研究表明: 25℃时,该体系在氯化钠饱和的区域里存在8种复盐,有15个两盐结晶区,25个零变量点;零变量点中只有一个共结点,为Mg(NO3)2?6H2O、NaCl、MgCl2?6H2O、MgSO4?(1~6)H2O、KCl?MgCl2?6H2O五盐共饱点,其余为反应点. 在此基础上,研究了新疆硝酸盐卤水矿蒸发析盐规律.  相似文献   

11.
This work describes a laboratory experiment intended to study the formation and spectral reflectance properties of stratified salt crusts that cause severe environmental degradations to soil and water resources in arid regions. Salt crusts were prepared by evaporating three types of saline solutions consisting of i) NaCl - Na2SO4, ii) Na2SO4 - MgSO4, and iii) NaCl - MgSO4 at an initial concentrations of 50 mmol L(-1). They were examined for evaporite mineralogy using X-ray diffraction, optical and reflected microscopes, and for spectral reflectance with a high-resolution spectroradiometer (GER 3700) in the visible and near-infrared regions (400-2500 nm). The study documented chemical and environmental implications of the spectral properties of salt formed from the studied saline-systems. The reported results can be used to understand remotely sensed signatures of salt crusts and their implications.  相似文献   

12.
A thermodynamic model of the system H(+)-NH?(+)-Na(+)-SO?2?-NO??-Cl?-H?O is parametrized and used to represent activity coefficients, equilibrium partial pressures of H?O, HNO?, HCl, H?SO?, and NH?, and saturation with respect to 26 solid phases (NaCl(s), NaCl·2H?O(s), Na?SO?(s), Na?SO?·10H?O(s), NaNO?·Na?SO?·H?O(s), Na?H(SO?)?(s), NaHSO?(s), NaHSO?·H?O(s), NaNH?SO?·2H?O(s), NaNO?(s), NH?Cl(s), NH?NO?(s), (NH?)?SO?(s), (NH?)?H(SO?)?(s), NH?HSO?(s), (NH?)?SO?·2NH?NO?(s), (NH?)?SO?·3NH?NO?(s), H?SO?·H?O(s), H?SO?·2H?O(s), H?SO?·3H?O(s), H?SO?·4H?O(s), H?SO?·6.5H?O(s), HNO?·H?O(s), HNO?·2H?O(s), HNO?·3H?O(s), and HCl·3H?O(s)). The enthalpy of formation of the complex salts NaNH?SO?·2H?O(s) and Na?SO?·NaNO?·H?O(s) is calculated. The model is valid for temperatures < or approximately 263.15 up to 330 K and concentrations from infinite dilution to saturation with respect to the solid phases. For H?SO?-H?O solutions the degree of dissociation of the HSO?? ion is represented near the experimental uncertainty over wide temperature and concentration ranges. The parametrization of the model for the subsystems H(+)-NH?(+)-NO??-SO?2?-H?O and H(+)-NO??-SO?2?-Cl?-H?O relies on previous studies (Clegg, S. L. et al. J. Phys. Chem. A 1998, 102, 2137-2154; Carslaw, K. S. et al. J. Phys. Chem. 1995, 99, 11557-11574), which are only partly adjusted to new data. For these systems the model is applicable to temperatures below 200 K, dependent upon liquid-phase composition, and for the former system also to supersaturated solutions. Values for the model parameters are determined from literature data for the vapor pressure, osmotic coefficient, emf, degree of dissociation of HSO??, and the dissociation constant of NH? as well as measurements of calorimetric properties of aqueous solutions like enthalpy of dilution, enthalpy of solution, enthalpy of mixing, and heat capacity. The high accuracy of the model is demonstrated by comparisons with experimentally determined mean activity coefficients of HCl in HCl-Na?SO?-H?O solutions, solubility measurements for the quaternary systems H(+)-Na(+)-Cl?-SO?2?-H?O, Na(+)-NH?(+)-Cl?-SO?2?-H?O, and Na(+)-NH?(+)-NO??-SO?2?-H?O as well as vapor pressure measurements of HNO?, HCl, H?SO?, and NH?.  相似文献   

13.
Internal structures, hygroscopic properties and heterogeneous reactivity of mixed CH(3)SO(3)Na/NaCl particles were investigated using a combination of computer modeling and experimental approaches. Surfactant properties of CH(3)SO(3)(-) ions and their surface accumulation in wet, deliquesced particles were assessed using molecular dynamics (MD) simulations and surface tension measurements. Internal structures of dry CH(3)SO(3)Na/NaCl particles were investigated using scanning electron microscopy (SEM) assisted with X-ray microanalysis mapping, and time-of-flight secondary ion mass spectrometry (TOF-SIMS). The combination of these techniques shows that dry CH(3)SO(3)Na/NaCl particles are composed of a NaCl core surrounded by a CH(3)SO(3)Na shell. Hygroscopic growth, deliquescence and efflorescence phase transitions of mixed CH(3)SO(3)Na/NaCl particles were determined and compared to those of pure NaCl particles. These results indicate that particles undergo a two step deliquescence transition: first at ~69% relative humidity (RH) the CH(3)SO(3)Na shell takes up water, and then at ~75% RH the NaCl core deliquesces. Reactive uptake coefficients for the particle-HNO(3) heterogeneous reaction were determined at different CH(3)SO(3)Na/NaCl mixing ratios and RH. The net reaction probability decreased notably with increasing CH(3)SO(3)Na and at lower RH.  相似文献   

14.
1. INTRODUCTION Nanofiltration (NF) membranes have been known for having properties between those of ultrafiltration (UF) membranes and reverse osmosis (RO) membranes and thus have found applications in many areas especially in rejecting multivalent ions for water softening and charged organic pollutants for wastewater treatment. Because of their advantages, such as low operating pressure, high permeate flux, high retention to multivalent ions and organic molecules with molecular weight …  相似文献   

15.
A polypiperazine amide (PA)/polysulfone (PSF) thin film composite (TFC) was prepared by interfacial polymerization (IP) using a trimesoyl chloride hexane solution as the oil phase and a piperazine aqueous solution as the water phase on a porous polysulfone hollow fiber substrate. Its separating behaviors were investigated systematically to various salts such as NaCl, KCI, Na2SO4,MgCl2, CaCl2 and MgSO4, showing the highest rejection rate to Na2SO4, the second to MgSO4, the third to MgCl2 and CaCl2, and the lowest to KCI, NaCl, being 99%, 98%, 70%, 60%, 15% and 10% respectively. Under an increasing pressure or with time, the rejection rate of the TFC rises to a plateau. To various concentration of the feed, the rejection rate reduced gradually with the higher concentration.  相似文献   

16.
Using an electrodynamic balance, we determined the relative humidity (RH) at which aqueous inorganic-malonic acid particles crystallized, with ammonium sulfate ((NH(4))(2)SO(4)), letovicite ((NH(4))(3)H(SO(4))(2)), or ammonium bisulfate (NH(4)HSO(4)) as the inorganic component. The results for (NH(4))(2)SO(4)-malonic acid particles and (NH(4))(3)H(SO(4))(2)-malonic acid particles show that malonic acid decreases the crystallization RH of the inorganic particles by less than 7% RH when the dry malonic acid mole fraction is less than 0.25. At a dry malonic acid mole fraction of about 0.5, the presence of malonic acid can decrease the crystallization RH of the inorganic particles by up to 35% RH. For the NH(4)HSO(4)-malonic acid particles, the presence of malonic acid does not significantly modify the crystallization RH of the inorganic particles for the entire range of dry malonic acid mole fractions studied; in all cases, either the particles did not crystallize or the crystallization RH was close to 0% RH. Size dependent measurements show that the crystallization RH of aqueous (NH(4))(2)SO(4) particles is not a strong function of particle volume. However, for aqueous (NH(4))(2)SO(4)-malonic acid particles (with dry malonic acid mole fraction = 0.36), the crystallization RH is a stronger function of particle volume, with the crystallization RH decreasing by 6 +/- 3% RH when the particle volume decreases by an order of magnitude. To our knowledge, these are the first size dependent measurements of the crystallization RH of atmospherically relevant inorganic-organic particles. These results suggest that for certain organic mole fractions the particle size and observation time need to be considered when extrapolating laboratory crystallization results to atmospheric scenarios. For aqueous (NH(4))(2)SO(4) particles, the homogeneous nucleation rate data are a strong function of RH, but for aqueous (NH(4))(2)SO(4)-malonic acid particles (with dry organic mole fraction = 0.36), the rates are not as dependent on RH. The homogeneous nucleation rates for aqueous (NH(4))(2)SO(4) particles were parametrized using classical nucleation theory, and from this analysis we determined that the interfacial surface tension between the crystalline ammonium sulfate critical nucleus and an aqueous ammonium sulfate solution is between 0.053 and 0.070 J m(-2).  相似文献   

17.
The HO2 uptake coefficient (gamma) for inorganic submicrometer wet and dry aerosol particles ((NH4)2SO4 and NaCl) under ambient conditions (760 Torr and 296 +/- 2 K) was measured using an aerosol flow tube (AFT) coupled with a chemical conversion/laser-induced fluorescence (CC/LIF) technique. The CC/LIF technique enabled experiments to be performed at almost the same HO2 radical concentration as that in the atmosphere. HO2 radicals were injected into the AFT through a vertically movable Pyrex tube. Injector position-dependent profiles of LIF intensity were measured as a function of aerosol concentration. Measured gamma values for dry aerosols of (NH4)2SO4 were 0.04 +/- 0.02 and 0.05 +/- 0.02 at 20% and 45% relative humidity (RH), respectively, while those of NaCl were <0.01 and 0.02 +/- 0.01 at 20% and 53% RH, respectively. For wet (NH4)2SO4 aerosols, measured gamma values were 0.11 +/- 0.03, 0.15 +/- 0.03, 0.17 +/- 0.04, and 0.19 +/- 0.04, at 45%, 55%, 65%, and 75% RH, respectively, whereas for wet NaCl aerosols the values were 0.11 +/- 0.03, 0.09 +/- 0.02, and 0.10 +/- 0.02 for 53%, 63%, and 75% RH, respectively. Wet (NH4)2SO4 and NaCl aerosols doped with CuSO4 showed gamma values of 0.53 +/- 0.12 and 0.65 +/- 0.17, respectively. These results suggest that compositions, RH, and phase for aerosol particles are significant to HO2 uptake. Potential HO2 loss processes and their atmospheric contributions are discussed.  相似文献   

18.
将硝酸铵液滴沉积在石英基底上,通过降低该液滴周围环境的相对湿度,测定了该液滴由低浓度直至过饱和状态下高信噪比的拉曼光谱.其中,相对湿度的变化可以精确控制液滴浓度的改变.在相对湿度(RH)由72.1%降低至37.9%的过程中,硝酸铵液滴v1-NO-3峰位保持在1048cm-1,半峰宽为10cm-1.该现象表明NO-3周围的水分子被NH4+取代后不会对v1-NO-3造成影响,说明水分子和NH4+所形成的氢键具有相同的强度.对2500-4000cm-1范围内的拉曼光谱进行成分分析,2890、3090、3140、3220、3402及3507cm-1分别被指认为NH+4伞状弯曲振动的泛频、NH+4伞状弯曲振动与摇摆振动的组合谱带、NH+4的对称伸缩振动、NH+4的反对称伸缩振动、水峰中强氢键成分和弱氢键成分.从拟合结果得出:强氢键在氢键结构中所占百分含量随液滴相对湿度的降低而减少,弱氢键所占百分含量随液滴相对湿度的降低而增加.该变化趋势是NO-3和NH+4之间复杂相互作用的结果.  相似文献   

19.
The interaction forces in emulsion films stabilized using hydrophobically modified inulin (INUTEC SP1) were investigated as a function of concentrations of electrolytes of different types (NaCl, Na2SO4, and MgSO4). At a constant disjoining pressure of 36 kPa, a constant temperature of 22 degrees C, and a film radius of 100 microm, the film thickness, hw, decreased with an increase in electrolyte concentration until a critical value, Cel,cr, was reached above which hw remained constant. Cel,cr decreased with an increase in electrolyte valency (Cel,cr = 5 x 10(-2) mol.dm(-3) for NaCl and 1 x 10(-2) mol.dm(-3) for Na2SO4 and MgSO4). The reduction in film thickness below Cel,cr could be accounted for by the compression of the electrical double layer. The Pi-hw isotherms below Cel,cr could be fitted using the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory (constant charge and constant potential cases were considered). At a certain pressure, the film jumped to a Newton black film. The pressure at the jump decreased with an increase in electrolyte valency as a result of the reduction of the electrostatic barrier. At electrolyte (NaCl, Na2SO4, or MgSO4) concentrations higher than Cel,cr, the jump occurred at a low pressure that was independent of the electrolyte type. The thickness of the Newton black film was independent of both the concentration and nature of the electrolytes studied. The results show clearly that the polyfructose loops and tails remain strongly hydrated both in water and in high concentrations of electrolytes of different types, and these results explain the high INUTEC SP1 emulsion stability against coalescence of emulsions prepared under such conditions.  相似文献   

20.
应用离子色谱仪测定了电缆地层测试取样获得的海上某井两个深度的水样品中的阴离子F-、Cl-、NO2-、Br-、NO3-、PO43-、SO24-和阳离子Li+、Na+、NH4+、K+、Ca2+、Mg2+、Sr2+的离子含量。对离子色谱在分析地层水离子含量的应用进行了简单的探讨,认为该技术在判断油田水类型和指导钻井液调配方面具有很好的应用前景及价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号