首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stabilization of ammonium dinitramide in the liquid phase   总被引:1,自引:0,他引:1  
Andreev  A. B.  Anikin  O. V.  Ivanov  A. P.  Krylov  V. K.  Pak  Z. P. 《Russian Chemical Bulletin》2000,49(12):1974-1976
The kinetics of accumulation of the main products of thermal decomposition of ammonium dinitramide in the melt was investigated. The isotope composition of nitrogen-containing gases evolved by the decomposition of 15NH4N(NO2)2 and NH4 15N(NO2)2 was found. Easily oxidized salts, amines, amides, iodides, and other compounds soluble in the melt interfere with the liquid-phase decomposition of ammonium dinitramide.  相似文献   

2.
制备了含3,6-双(1-氢-1,2,3,4-四唑-5-氨基)-1,2,4,5-四嗪(BTATz)铅复合物(LCBTATZ)的双基推进剂和改性双基推进剂. 采用热重-微商热重法(TG-DTG)及差示扫描量热法(DSC)研究了其热分解行为和非等温分解动力学并在此基础上评价了其热安全性. 结果表明, LCBTATz-DB复合物中在350-540 K之间只存在一个放热分解峰, LCBTATz-CMDB复合物中存在两个连续的放热分解峰在390-540 K温度范围内, 其机理方程分别为: f(α)=α-1/2和f(α)=2(1-α)3/2. 计算了热加速分解温度(TSADT)、热爆炸临界温度(Tb)、热点火温度(TTIT)和绝热至爆时间(tTlad),其值分别为: DB001复合物TSADT=444.50 K, TTITT=453.96 K, Tb=471.84 K; tTlad=39.36 s; CMDB100复合物, TSADT=442.38 K, TTITT=452.89 K,Tb=464.13 K,tTlad=21.3 s,并以此来评价化合物的热安全性. 考察了LCBTATz-DB以及LCBTATz-CMDB的燃烧性能, 结果表明LCBTATZ 是一种高效的双基燃烧催化剂, 在较大的压力范围内可以显著的提高燃速并且大幅度的降低压力指数. 对于双基推进剂在2-8 MPa压力范围内出现了明显的超燃速现象, 8-12 MPa出现了“麦撒”效应, 对于改性双基推进剂的压力指数降到0.18.  相似文献   

3.
Glycidyl azide polymer(GAP) with the advantages of non-volatility and excellent thermal stability is a candidate as a replacement for nitroglycerine(NG) in a double base propellant. The GAP-NC double base propellants were formulated with GAP and nitrocellulose(NC) fibers. Tensile test and SEM characterization indicated that GAP-NC propellants had a homogeneous structure. Thermogravimetric analysis of GAP-NC propellants revealed that the onset decomposition temperature reached a high level ranging from 192.9 to 194.6 °C, which indicated that the substitution of NG with GAP contributed to the safe storage and process operations for double base propellant. The result analysis of decomposition products of GAP-NC propellants showed that the main gas decomposition products of the propellants were NO, NO_2, CO, CO_2, NH_3, CH_4, HCN, N_2, CH_2O and C_2H_4O. The thermal decomposition process of the specimens was proposed.  相似文献   

4.
This investigation uses the Gaussian 98 program, density functional theory (DFT) B3LYP/6‐31G(d,p), and ab initio MP2/6‐31G(d,p) and HF/6‐31G(d) methods to model energetic diguanidinium 5,5′‐azotetrazolate (GZT) ionic species in order to determine their decomposition mechanisms. GZT was initially cracked into two guanidinium cations (G+) and a 5,5′‐azotetrazolate anion (ZT2?). Three routes—the elimination of a hydronium ion (H+), the elimination of a hydrogen radical (H·), and the elimination of an amine radical (·NH2)—are suggested for the decomposition of the G+ cation, and three routes—single ring opening, double ring opening and N? N bond cleavage outside the ring—are proposed for the further decomposition of the ZT2? anion. Fourteen decomposition species were obtained on splitting both the cation and anion. This result reveals the reliability of the aforementioned decomposition mechanisms. The transition state species were also obtained using a two‐structure or three‐structure synchronous transit‐guided quasi‐Newton (STQN) between the Cartesian coordinates of related particles at specific decomposition stages in this research. The corresponding activation energies in all decomposition stages were considered to infer the most feasible pathways of GZT decomposition. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

5.
Thermal behaviour of ammonium (NH4alg), mono- (MEAalg), di- (DEAalg) and triethanolammonium (TEAalg) salts of alginic acid (Halg) was investigated by thermogravimetry (TG) and differential scanning calorimetry (DSC). Salts were prepared by the direct reaction of alginic acid with the ammonium hydroxide and with the respective ethanolamines. After preparation the compounds were lyophilized during 24 h and characterized by FTIR spectroscopy and elemental analysis (C, H and N). Under air the compounds exhibited three successive thermal decomposition steps: dehydration, decomposition of the polymeric matrix and finally, burning of carbonaceous residue. Under nitrogen two steps (dehydration and decomposition) were observed. The stability order of this series of compounds was: TEAalg this series of compounds was: TEAalg<DEAalg<NH4alg<Halg≈MEAalg. DSC curves between –50 and 150°C did not show any thermal events suggesting that after lyophilization probably non-freezing type water is present in the system.  相似文献   

6.
Ammonium dinitramide (ADN) is one of the several promising new solid propellant oxidizers. ADN is of interest because its oxygen balance and energy content are high, and it also halogen-free. One of the most important characteristics of a propellant oxidizer, however, is stability and ADN is known to degrade to ammonium nitrate (AN) during storage, which will affect its performance. This study focused on the effects of aging on the thermal decomposition mechanism of ADN. The thermal behaviors of ADN and ADN/AN mixtures were studied, as were the gases evolved during their decomposition, using differential scanning calorimetry (DSC), thermogravimetry–differential thermal analysis-infrared spectrometry (TG–DTA-IR), and thermogravimetry–differential thermal analysis-mass spectrometry (TG–DTA-MS). The results of these analyses demonstrated that the decomposition of ADN occurs via a series of distinct stages in the condensed phase. The gases evolved from ADN decomposition were N2O, NO2, N2, and H2O. In contrast, ADN mixed with AN (to simulate aging) did not exhibit the same initial reaction. We conclude that aging inhibits early stage, low temperature decomposition reactions of ADN. Two possible reasons were proposed, these being either a decrease in the acidity of the material due to the presence of AN, or inhibition of the acidic dissociation of dinitramic acid by NO 3 ? .  相似文献   

7.
The intramolecular hydrogen‐bonding interactions and properties of a series of nitroamino[1,3,5]triazine‐based guanidinium salts were studied by using the dispersion‐corrected density functional theory method (DFT‐D). Results show that there are evident LP(N or O; LP=lone pair)→σ*(N? H) orbital interactions related to O???H? N or N???H? N hydrogen bonds. Quantum theory of atoms in molecules (QTAIM) was applied to characterize the intramolecular hydrogen bonds. For the guanidinium salts studied, the intramolecular hydrogen bonds are associated with a seven‐ or eight‐membered pseudo‐ring. The guanylurea cation is more helpful for improving the thermal stabilities of the ionic salts than other guanidinium cations. The contributions of different substituents on the triazine ring to the thermal stability increase in the order of ? NO223 (? ONO2)2. Energy decomposition analysis shows that the salts are stable owing to electrostatic and orbital interactions between the ions, whereas the dispersion energy has very small contributions. Moreover, the salts exhibit relatively high densities in the range of 1.62–1.89 g cm?3. The detonation velocities and pressures lie in the range of 6.49–8.85 km s?1 and 17.79–35.59 GPa, respectively, which makes most of them promising explosives.  相似文献   

8.
The thermal decomposition of the four nitrogen-rich salts of ammonia (NH4), aminoguanidine (AG), carbohydrazide (CHZ) and 5-aminotetrazo (ATZ) based on trinitrophloroglucinol (H3TNPG) was investigated using the differential scanning calorimetry (DSC), thermogravity (TG), and dynamic vacuum stability test (DVST). DSC and TG methods research the complete decomposition, while DVST method researches the very early reaction stage. The peak temperatures of DSC curves are consistent with the temperatures of maximum mass loss rates of TG curves. The apparent activation energies of these H3TNPG-based salts obtained by DSC and DVST have the same regularity, i.e., (ATZ)(H2TNPG)·2H2O < (CHZ)(HTNPG)·0.5H2O < NH4(H2TNPG) < (AG)(H2TNPG). The thermal stability order is (ATZ)(H2TNPG)·2H2O < (CHZ)(HTNPG)·0.5H2O < (AG)(H2TNPG) < NH4(H2TNPG), which was evaluated by DVST according to the evolved gas amount of thermal decomposition. DVST can monitor the real-time temperature and pressure changes caused by thermal decomposition, dehydration, phase transition and secondary reaction, and also evaluate the thermal stability and kinetics.   相似文献   

9.
The melting and decomposition behaviour of the double salts MBr·MgBr2·6H2O (M=K, NH4, Rb, Cs) has been investigated in a closed system under dynamic and quasi-isothermal and quasi-isobaric conditions between 20°C and 300°C or 600°C, respectively. DTA heating and cooling cycles illustrate the melting behaviour of the double salts and give information on the melting point of these substances.The thermal decomposition of double salts under quasi-isothermal and quasi-isobaric conditions takes place in the melt (with the exception of RbBr·MgBr2·6H2O) and under reduced pressure in the solid phase. A double salt of the type MBr·MgBr2·6H2O is formed as a stable intermediate. The final product of all types of thermal decomposition are basic products with different hydroxide or oxide contents, respectively.
Zusammenfassung In einem abgeschlossenem System wurde unter dynamischen und quasiisothermen und quasiisobaren Bedingungen im Temperaturbereich zwischen 20°C und 300°C oder 600°C das Schmelz- und Zersetzungsverhalten der Doppelsalze MBrMgBr2·6H2O (mitM=K, NH4, Rb, Cs) untersucht. DTA-Heiz- und Kühlzyklen zeigen das Schmelzverhalten der Doppelsalze und geben gleichzeitig Auskunft über den Schmelzpunkt dieser Verbindungen.Die thermische Zersetzung der Doppelsalze unter quasiisothermen und quasiisobaren Bedingungen erfolgt ausgehend von der Schmelze (mit Ausnahme von RbBrMgBr2·6H2O) und unter vermindertem Druck ausgehend vom Feststoff. Ein Doppelsalz des Typs MBrMgBr2·2H2O wird als Zwischenprodukt gebildet. Das Endprodukt bei allen Zersetzungstypen sind basische Produkte mit unterschiedlichem Hydroxidoder Oxidgehalt.


Dedicated to Prof. Dr. H. J. Seifert on the occasion of his 60th birthday  相似文献   

10.
Orthorhombic structural perovskite NdCrO3 nanocrystals with size of 60 nm were prepared by microemulsion method, and characterized by XRD, TEM, HRTEM, SEM, EDS and BET. The catalytic effect of the NdCrO3 for thermal decomposition of ammonium perchlorate (AP) was investigated by DSC and TG-MS. The results revealed that the NdCrO3 nanoparticles had effective catalysis on the thermal decomposition of AP. Adding 2% of NdCrO3 nanoparticles to AP decreased the temperature of thermal decomposition by 87° and increased the heat of decomposition from 590 to 1073 J g−1. Gaseous products of thermal decomposition of AP were NH3, H2O, O2, HCl, N2O, NO, NO2 and Cl2. The mechanism of catalytic action was based on the presence of superoxide ion O2 on the surface of NdCrO3, and the difference of thermal decomposition of AP with 2% of NdCrO3 and pure AP was mainly caused by the different extent of oxidation of ammonium.  相似文献   

11.

Synthesis of ammonium hydroxodisulfitoferriate(III), (diammonium catena-{bis(μ 2-sulfito-κO,κO)-μ 2-hydroxo-κ2O}ferrate(III) monohydrate) (NH4)2[Fe(OH)(SO3)2]·H2O (compound 1) and its thermal behavior is reported. The compound is stable in air. Its thermal decomposition proceeds without the expected quasi-intramolecular oxidation of sulfite ion with ferric ions. The disproportionation reaction of the ammonium sulfite, formed from the evolved NH3, SO2 and H2O in the main decomposition stage of 1, results in the formation of ammonium sulfate and ammonium sulfide. The ammonium sulfide is unstable at the decomposition temperature of 1 (150 °C) and transforms into NH3 and H2S which immediately forms elementary sulfur by reaction with SO2. The formation and decomposition of other intermediate compounds like (NH4)2SnOx (n = 2, x = 3 and n = 3, x = 6) results in the same decomposition products (S, SO2 and NH3). Two basic iron sulfates, formed in different ratios during synthesizing experiments performed under N2 or in the presence of air, have been detected as solid intermediates which contain ammonium ions. The final decomposition product was proved to be α-Fe2O3 (mineral name hematite).

  相似文献   

12.
Rare-earth ammonium sulfate octahydrates of R2(SO4)3·(NH4)2SO4·8H2O (R=Pr, Nd, Sm, and Eu) were synthesized by a wet process, and the stable temperature region for the anhydrous R2(SO4)3·(NH4)2SO4 form was clarified by thermogravimetry/differential thermal analysis, infrared, Raman, and electrical conductivity measurements. Detailed characterization of these double salts demonstrated that the thermal stability of anhydrous R2(SO4)3·(NH4)2SO4 is different between the Pr, Nd salts and the Sm, Eu salts, and the thermal decomposition behavior of these salts was quite different from the previous reports.  相似文献   

13.
The thermal decomposition behavior and kinetic parameters of the exothermic decomposition reactions of the title compound in a temperature‐programmed mode have been investigated by means of DSC, TG‐DTG and lower rate Thermolysis/FTIR. The possible reaction mechanism was proposed. The critical temperature of thermal explosion was calculated. The influence of the title compound on the combustion characteristic of composite modified double base propellant containing RDX has been explored with the strand burner. The results show that the kinetic model function in differential form, apparent activation energy Ea and pre‐exponential factor A of the major exothermic decomposition reaction are 1‐a,207.98 kJ*mol?1 and 1015.64 s?1, respectively. The critical temperature of thermal explosion of the compound is 312.87 C. The kinetic equation of the major exothermic decomposition process of the title compound at 0.1 MPa could be expressed as: dα/dT=1016.42 (1–α)e‐2.502×104/T As an auxiliary catalyst, the title compound can help the main catalyst lead salt of 4‐hydroxy‐3,5dinitropyridine oxide to enhance the burning rate and reduce the pressure exponent of RDX‐CMDB propellant.  相似文献   

14.
The thermal decomposition of the ferric and nickel acetate salts has been followed. It was found that the heating rate affects the decomposition steps. For a heating rate of 1 K min–1 the product is either Fe2O3 or NiO. For a higher heating rate the suboxides are obtained and reoxidized again on further heating. The decomposition of the mixed salt is an overlap of the DTA for the separate salts but the decomposition reactions are shifted to lower temperatures.We would like to thank Prof. Dr. N. Afify, Phys. Dept., Fact. Science, Assiut University, for experimental assistance and valuable discussions.  相似文献   

15.
采用DFT 方法对偶氮四唑胍盐(GZT)等6 种偶氮四唑非金属盐进行了B3LYP/6-31G 水平的几何结构全优化, 计算了分子的最低空轨道能量(ELUMO)、最高占有轨道能量(EHOMO)及原子上的电荷分布等分子结构参数. 研究了偶氮四唑非金属盐的分子结构参数(包括氧平衡)和热分解参数(热分解温度和热分解活化能等)与其撞击感度之间的相关性. 结果表明, 偶氮四唑非金属盐的氧平衡越低, 撞击感度越低; 热分解温度和热分解活化能越低, 撞击感度越高; 取代基团上所带正电荷越大, 撞击感度越低.  相似文献   

16.
By means of simultaneous DTA-, TG- and DTG-technique, the silicate gels and the MFI crystals obtained from these gels have been investigated. The gels have been prepared in presence and in absence of tetrapropylammonium cation (TPA+) and with Li+, Na+, NH 4 + and K+ fluorides. In absence of TPA+ no thermal effects have been observed in Li+- and Na+-gels. The effects observed in the NH 4 + -gel stem from a decomposition and release of inorganic phases: SiF4, NH4F, NH3. The DTA/DTG effects in the TPA+ containing gels and in the MFI crystals of monodisperse size are attributed to the decomposition of TPA+ cation. It can be concluded from these effects that the interaction between the gels and the TPA+ cation is rather weak. The interaction between TPA+ and MFI crystals obtained in fluoride medium is stronger than the interaction with crystals obtained from alkaline media. Similar thermal effects are obtained after grinding the long crystals to those having a large distribution of crystal sizes.
Zusammenfassung Mittels simultaner DTA-, TG- und DTG-Techniken wurden Kieselgele und die MFI-Kristalle dieser Gele untersucht. Die Gele wurden in und ohne Gegenwart von Tetrapropylammoniumkationen (TPA+) und mit Li+-, Na+-, NH 4 und Kaliumfluoriden hergestellt. Bei Abwesenheit von TPA+ werden für Li+- und Na+-Gele keine thermischen Effekte beobachtet. Der bei NH 4– -Gelen beobachtete Effekt ergibt sich aus der Zersetzung und Abspaltung von anorganischen Phasen: SiF4, NH4F, NH3. Die DTA/DTG-Effekte in TPA+-haltigen Gelen und in den MFI-Kristallen monodispersen Ausmaes werden der Zersetzung des TPA+-Kations zugeschrieben. Daraus kann man schlieen, da die Wechselwirkung zwischen den Gelen und dem TPA+-Kation eher schwach ist. Die Wechselwirkung zwischen TPA+ und MFI-Kristallen aus fluoridischen Medien ist strker als die Wechselwirkung mit Kristallen aus alkalischen Medien. Ähnliche thermische Effekts erhlt man, nachdem man die langen Kristalle zerkleinert und eine breite Kristallgrenverteilung erhlt.
  相似文献   

17.
Different ammonium fluoroferrates (NH4)xFeF2x (2≤x≤3) have been investigated. The thermal decomposition of the compounds obtained can be interpreted by their identical crystal structures (cryolite type). The decomposition products of all ammonium fluoroferrates formed in initial stage are isostructural of NH4FeF4. The decomposition is accompanied by the partial reduction of Fe(III) to Fe(II) by ammonium isolated. The end product of the thermal decomposition is FeF2 and FeF3 mixture.  相似文献   

18.
The high pressure phase diagrams of NH4ClO4 and NH4BF4 were studied by means of differential thermal analysis and volumetric techniques. The high temperature portions of these diagrams are intermediate between those of the corresponding potassium and rubidium salts, but at low temperatures the onset of hydrogen bonding causes the appearance of phases which are unique to the ammonium compounds.  相似文献   

19.
A New Synthesis for Nitrosyl Salts with Weakly Coordinating Anions Exemplified by NO[B(CF3)4] A new synthesis for nitrosyl salts of weakly coordinating anions is described, using the corresponding guanidinium salts as starting materials. The guanidinium salt [C(NH2)3][B(CF3)4] was obtained by a metathesis reaction of K[B(CF3)4] with [C(NH2)3]Cl. Treatment of the guanidinium salt with liquid NO2 resulted in analytical pure NO[B(CF3)4] in quantitative yield. The guanidinium and nitrosyl tetrakis(trifluormethyl)borates were characterized by vibrational and NMR spectroscopy as well as by DSC measurements.  相似文献   

20.
Series of new aromatic R2R2N+Br (R=benzyl, 4-methylbenzyl, 2-phenylethyl, 3-phenylpropyl; R′=ethyl, methyl, isopropyl) or RR2NH+Br-type (R=benzyl, R′=isopropyl) quaternary ammonium bromides were prepared by using novel synthetic route in which a formamide (N,N-diethylformamide, N,N-dimethylformamide, N,N-diisopropylformamide) is treated with aralkyl halide in presence of a weak base. The compounds were characterized by 1H-NMR and 13C-NMR spectroscopy and mass spectrometry. Structures of the crystalline compounds were determined by X-ray single crystal diffraction, and in addition the powder diffraction method was used to study the structural similarities between the single crystal and microcrystalline bulk material. Three of the compounds crystallized in monoclinic, two in orthorhombic and one in triclinic crystal system, showing ion pairs, which are interconnected by weak hydrogen bonds and weak π-π interactions between the phenyl rings. Three of the compounds appeared as viscous oil or waxes. Finally, TG/DTA and DSC methods were used to analyze thermal properties of the prepared compounds. The lowest melting points were obtained for diethyldi-(2-phenylethyl)ammonium bromide (122.2 °C) and for diethyldi-(3-phenylpropyl)-ammonium bromide (109.1 °C). In general, decomposition of the compounds started at 170-190 °C without identifiable cleavages, thus liquid ranges of 30-70 °C were observed for some of the compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号