首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
近几十年来,随着全球变暖和能源危机的日益严重,对取之不尽、用之不竭的清洁能源技术的需求越来越迫切.1991年Gratzel首次报道了染料敏化太阳能电池(DSSCs),它以低廉的价格、优异的理论功率转换效率(PCE)、环保、多色透明等优点而引起了研究者的关注.Sb2S3因其1.5-2.2 eV的间隙宽度被认为是最有前途的对电极材料之一.此外,Sb2S3是地球中含量丰富的无毒锑矿物的主要成分,还被广泛应用于太阳能转换材料、催化剂、光导探测器等领域.众所周知,石墨烯具有巨大的比表面积、显著的载流子迁移率和优异的热/化学稳定性,这使得提高电子转移效率和电催化活性成为可能.首先,采用改进的Hummers方法制备了氧化石墨烯纳米片;然后采用水热法通过改变Sb源以及实验pH值,合成了Sb2S3和Sb2S3@RGO样品.对样品进行X射线粉末衍射(XRD)、扫描电子显微镜镜(SEM)、投射电子显微镜(TEM)以及比表面积表征.结果表明,在Sb源不变的情况下,Sb2S3样品的形貌随pH值的变化而变化.以三乙酸锑为Sb源,在pH=3时,Sb2S3的形貌类似于一个完整的纳米棒结构;在pH值为6时,样品为不规则球体;当pH值为8时,纳米片结构开始出现;但当p H=10时,纳米片结构并不均匀.根据XRD分析,只有当pH值为3时,样品的衍射峰才与标准卡(JCPDS42-1393)的衍射峰一致.当以氯化锑作为锑源,样品的形貌由不规则的杆状(pH=3)转变为纳米球(pH=6),然后出现纳米片结构(pH=8).不同的是,当p H值为10时,纳米薄片形成均一的花状结构.XRD结果表明,除pH值为3外,样品的衍射峰与标准卡(JCPDS42-1393)的值吻合较好.结果表明,合成条件所需的Sb源和碱性环境是合成具有均匀花状结构的纳米片状Sb2S3所必不可少的.测得Sb2S3的比表面积约为41.72 m^2g^-1,平均孔径为31.08nm,Sb2S3@RGO的分别为44.53 m^2g^-1和22.65 nm.Sb2S3和Sb2S3@RGO复合材料均具有介孔结构,为内部电催化剂提供了广阔的通道,从而提高了对电极的催化能力,促进了电化学反应.将Sb2S3纳米花球和Sb2S3@RGO纳米薄片作为染料敏化太阳能电池的对电极进行了测试,由于石墨烯的引入,后者比前者具有更好的电催化性能.电化学实验结果表明,与Sb2S3,RGO,Pt作为对电极相比,制备的Sb2S3@RGO纳米薄片具有更好的催化活性、电荷转移能力和电化学稳定性,Sb2S3@RGO的功率转换效率达到8.17%,优于标准Pt对电极(7.75%).  相似文献   

2.
孔状Co_3O_4纳米片和纳米棒的选择性合成和表征(英文)   总被引:1,自引:0,他引:1  
利用两步实验选择性合成孔状Co3O4纳米片和纳米棒:首先,以Co(NO3)2·6H2O,NaOH和不同量的NH4F为原料在120℃水热6h的条件下合成了Co(OH)2-Co3O4纳米片(S1)和Co(OH)F-Co3O4纳米棒(S2);然后将所得纳米片和纳米棒在400℃时加热2h即得到多孔的Co3O4纳米片和纳米棒。所得产物用X射线衍射(XRD)、场发射扫描电子显微镜(FE-SEM)和透射电子显微镜(TEM)进行了表征。此外电化学测试表明Co3O4纳米棒的电容量比Co3O4纳米片的更大。  相似文献   

3.
PbS纳米棒束的水热合成与表征   总被引:2,自引:0,他引:2  
以乙酸铅和硫脲为主要原料,十二烷基磺酸钠和十六烷基三甲基溴化铵为表面活性剂.在120℃反应12 h.水热法制备了PbS纳米棒束.并利用X射线粉末衍射(XRD)、透射电子显微镜(TEM)和高分辨电子显微镜(HRTEM)等手段对产物进行了表征.实验结果表明:产物为立方结构的PbS单晶纳米棒所组成的纳米棒束.考察了乙酸铅和硫脲的摩尔比以及反应温度对合成产物的影响,发现当乙酸铅和硫脲的摩尔比为1∶1时,得到大量的PbS纳米棒束,并初步探讨了其形成机理.  相似文献   

4.
以铁单质和草酸溶液为原料,将0.75mol/L的草酸溶液滴在铁片上,于空气中200~600℃范围内加热1h,制备了Fe3O4纳米棒和Fe2O3纳米线,用扫描电镜(SEM)、X射线衍射仪(XRD)和透射电子显微镜(TEM)对产物进行表征,并研究了反应温度对产物形貌的影响.结果表明,在200~500℃下空气中反应1h在铁片上直接生长出矩形截面的多晶的立方相Fe3O4纳米棒,其直径范围约为0.5~0.8μm.当反应温度为600℃,得到的产物为六方相的Fe2O3纳米线.研究表明,C2H2O4对纳米棒的形成起关键作用,并提出了可能生长机理.  相似文献   

5.
以乙酸铅和硫脲为主要原料,十二烷基磺酸钠和十六烷基三甲基溴化铵为表面活性剂,在120℃反应12h,水热法制备了PbS纳米棒.并利用X射线粉末衍射(XRD)、透射电子显微镜(TEM)和高分辨电子显微镜(HRTEM)等手段对产物进行了表征,实验结果表明:产物为纯相立方结构的PbS单晶纳米棒.考察了乙酸铅和硫脲间的摩尔比以及反应温度对合成产物的影响,并初步探讨其形成机理.  相似文献   

6.
以乙酸铅和硫脲为主要原料,十二烷基磺酸钠和十六烷基三甲基溴化铵为表面活性剂,在120℃反应12h,水热法制备了PbS纳米棒.并利用X射线粉末衍射(XRD)、透射电子显微镜(TEM)和高分辨电子显微镜(HRTEM)等手段对产物进行了表征,实验结果表明:产物为纯相立方结构的PbS单晶纳米棒.考察了乙酸铅和硫脲间的摩尔比以及反应温度对合成产物的影响,并初步探讨其形成机理.  相似文献   

7.
以电纺In_2O_3纳米纤维为模版,通过溶剂热法构建了p-CuO/n-In_2O_3异质结纳米纤维.采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)和X射线光电子能谱(XPS)等方法对所得材料的形貌和结构进行表征.结果表明,CuO纳米颗粒可以均匀地负载在超细In_2O_3纳米纤维表面;随着反应液中乙酸铜浓度的增加,负载的CuO纳米颗粒密度也逐渐增加.通过制备旁热式气敏器件对复合纳米纤维材料的气敏特性进行了研究.结果表明,与纯In_2O_3纳米纤维相比,p-CuO/n-In_2O_3异质结纳米纤维对H_2S气体具有较高的灵敏度和较低的工作温度.  相似文献   

8.
离子液介质中硫化铋单晶纳米棒制备与表征   总被引:6,自引:0,他引:6  
采用硝酸铋和硫脲为先驱原料,以离子液为反应介质,合成了硫化铋单晶纳米棒。所得产物用X射线粉末衍射、X射线能量色散谱、透射电子显微镜、高分辨电子显微镜、选区电子衍射、扫描电子显微镜、紫外-可见吸收光谱进行了表征。结果表明,在含有乙基硫酸根离子的1-甲基3-乙基咪唑盐的离子液中,160 ℃下回流反应,可以得到结晶良好的硫化铋纳米棒,并对其形成机理进行了探讨。  相似文献   

9.
采用简单的葡萄糖辅助溶剂热合成法制备了碲化铅纳米棒。 利用X射线衍射(XRD)、场发射扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM)、高分辨率透射电子显微镜(HRTEM)、能谱仪(EDS)等技术手段进行材料结构和形貌表征。 结果表明,产物是纯的立方相PbTe,纳米棒的直径约为50 nm,长500 nm左右。 研究了反应过程的影响因素及碲化铅纳米棒的形成机制。 产物的形貌受葡萄糖的量、反应时间、反应温度和聚乙烯吡咯烷酮(PVP)质量的控制,分析了形成这种结构的原因。  相似文献   

10.
以硝酸铋[Bi(NO)3]和硫化钠(Na2S)为反应原料, 采用水热法在120 ℃下反应12 h, 制备出Bi2S3纳米管. 利用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、选区电子衍射(SAED)和高分辨透射电镜(HRTEM)对其结构和形貌进行了表征. 结果表明, 所制备的产物是结晶良好的正交相Bi2S3纳米管, 其外径为100~500 nm, 内径为50~200 nm, 长为1~5 μm. 根据实验结果讨论了Bi2S3纳米管的生长机理. 初步研究了反应温度和矿化剂种类对产物形貌和结构的影响.  相似文献   

11.
Wang H  Lu YN  Zhu JJ  Chen HY 《Inorganic chemistry》2003,42(20):6404-6411
Regular stibnite (Sb(2)S(3)) nanorods with diameters of 20-40 nm and lengths of 220-350 nm have been successfully synthesized by a sonochemical method under ambient air from an ethanolic solution containing antimony trichloride and thioacetamide. The as-prepared Sb(2)S(3) nanorods are characterized by employing techniques including X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, transmission electron microscopy, selected area electron diffraction, high-resolution transmission electron microscopy, and optical diffuse reflection spectroscopy. Microstructural analysis reveals that the Sb(2)S(3) nanorods crystallize in an orthorhombic structure and predominantly grow along the (001) crystalline plane. High-intensity ultrasound irradiation plays an important role in the formation of these Sb(2)S(3) nanorods. The experimental results show that the sonochemical formation of stibnite nanorods can be divided into four steps in sequence: (1) ultrasound-induced decomposition of the precursor, which leads to the formation of amorphous Sb(2)S(3) nanospheres; (2) ultrasound-induced crystallization of these amorphous nanospheres and generation of nanocrystalline irregular short rods; (3) a crystal growth process, giving rise to the formation of regular needle-shaped nanowhiskers; (4) surface corrosion and fragmentation of the nanowhiskers by ultrasound irradiation, resulting in the formation of regular nanorods. The optical properties of the Sb(2)S(3) amorphous nanospheres, irregular short nanorods, needle-shaped nanowhiskers, and regular nanorods are investigated by diffuse reflection spectroscopic measurements, and the band gaps are measured to be 2.45, 1.99, 1.85, and 1.94 eV, respectively.  相似文献   

12.
Single-crystalline Bi(2)S(3) and Sb(2)S(3) nanorods have been successfully synthesized by the microwave-assisted ionic liquid method. The starting reagents were Bi(2)O(3) or Sb(2)O(3), HCl, Na(2)S(2)O(3), and ethylene glycol (EG) or ethanolamine, and the ionic liquid used was 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF(4)]). Our experiments showed that the ionic liquid played an important role in the morphology of M(2)S(3) (M = Bi, Sb). Single-crystalline Bi(2)S(3) nanorods could be prepared in the presence of [BMIM][BF(4)]. However, urchinlike Bi(2)S(3) structures consisting of nanorods were formed without using [BMIM][BF(4)]. Single-crystalline Sb(2)S(3) nanorods were obtained in the presence of [BMIM][BF(4)]. However, single-crystalline Sb(2)S(3) nanosheets could be prepared in the absence of [BMIM][BF(4)]. The products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and electron diffraction (ED).  相似文献   

13.
A nanocomposite of antimony sulfide Sb2S3 embedded into the channels of single-walled carbon nanotubes (SWCNTs) has been prepared for the first time by the capillary wetting method and has been characterized by X-ray powder diffraction, transmission electron microscopy (TEM), transmission scanning electron microscopy (TSEM), and X-ray energy dispersive (EDX) spectroscopy. Antimony sulfide fills the channels of almost all SWCNTs. Channel filling is continuous along the entire length of the tube up to 1 μm. The diameters of filled SWCNTs fall in the range 0.6–3.5 nm. The periodicity of Sb2S3 crystal clusters observed on electron microscopic images is 2.0–2.2 nm along the nanotube axis and 2.5–3.5 nm in the transverse direction. A structural model of a Sb2S3 cluster is suggested.  相似文献   

14.
The gamma-irradiation technique has been extended to irradiate liquid ethylenediamine containing metal ions and sulfur powder, and a series of uniform metal sulfide particles including CdS, PbS, Cu(2)S, and Ag(2)S have been prepared at room temperature. X-ray powder diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-visible spectra have been used to characterize the products. In addition, the discussion shows that ethylenediamine and solvated electrons formed in ethylenediamine play crucial roles during the synthetic process. The stability constants of the metal chelates with ethylenediamine, the solubility product constants of the metal sulfides, and the standard electrode potentials of the metal ions also directly control the formation of metal sulfides. Copyright 2001 Academic Press.  相似文献   

15.
Bi2S3 flowerlike patterns with well-aligned nanorods were synthesized using a facile solution-phase biomolecule-assisted approach in the presence of L-cysteine (an ordinary and cheap amino acid), which turned out to serve as both the S source and the directing molecule in the formation of bismuth sulfide nanostructures. Emphatically, no nauseous scent (H2S) appeared in our experiments, which could not be avoided in other previous reports. The morphology, structure, and phase composition of the as-prepared Bi2S3 products were characterized using various techniques (scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, selected area electron diffraction, and high-resolution transmission electron microscopy). The formation mechanism for the bismuth sulfide flowerlike assemblies with well-arranged nanorods was also discussed. In addition, other Bi2S3 homogeneous nanostructures (e.g., networklike nanoflakes, nanorod-based bundles, and nanoflakes) were obtained through varying the experimental parameters. Interestingly, we have found that these synthesized bismuth sulfide nanostructures using the biomoleucle-assisted approach could electrochemically charge and discharge with the capacity of 142 (mA h)/g (corresponding to 0.51 wt % hydrogen in single-walled carbon nanotubes) under normal atmosphere at room temperature. A novel two-plateau phenomenon was observed in the synthesized Bi2S3 nanostructures, suggesting that there were two independent steps in the charging process. It has been demonstrated that the bismuth sulfide's morphology and the constant charge-discharge current density had a noticeable influence on their capacity of electrochemical hydrogen storage. These differences in hydrogen storage capacity are likely due to the size and density of space/pores as well as the morphology of different Bi2S3 nanostructures. The novel Bi2S3 nanomaterials may find potential applications in hydrogen storage, high-energy batteries, luminescence, optoelectronic and catalytic fields, as well as in the studies of structure-property relationships. This facile, environmentally benign, and solution-phase biomolecule-assisted method can be potentially extended to the preparation of other metal chalcogenides including FeS, CuS, NiS, PbS, MnS, and CoS nanostructures.  相似文献   

16.
A facile chemical conversion method has been demonstrated to prepare various metal sulfide hollow microspheres. The present strategy utilizes the large difference in solubility between ZnS and other metal sulfides (Ag2S, PbS, CuS, Cu2S, Bi2S3, and Sb2S3) for the effective transformation and shows mild growth conditions and good reproducibility. The morphology, structure, and composition of the yielded hollow nanostructures have been confirmed by transmission electron microscopy, energy-dispersive X-ray analysis, and X-ray diffraction measurements. The optical properties of the metal sulfide hollow microspheres have been systematically investigated by absorption, micro-Raman, and photoluminescence spectroscopy. The results demonstrate that these metal sulfide hollow microspheres possess good optical quality with tunable band gaps and luminescence properties, which indicate their broad potential applications. This simple chemical conversion technique can be further extended to the synthesis of other semiconductors with various morphologies.  相似文献   

17.
AgCuSe nanorods were prepared at room temperature by a redox reaction. The as-prepared product was characterized by X-ray powder diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy.X-ray powder diffraction shows that the as-prepared product is the tetragonal phase of AgCuSe. Transmission electron microscopy shows that the sample consists of nanorods with a diameter varying from 5 nm to 20 nm and a length varying from 200 nm to 600 nm. X-ray photoelectron spectroscopy shows that the purity of the sample is high. The formation mechanism of AgCuSe and the growth mechanism of AgCuSe nanorods were discussed.Thermodynamic calulations show that the final product in the synthetic system is pure AgCuSe. The solvent ethylenediamine did not only acts a didentate ligand to form relatively state Ag + and Cu + complexes, but also dissolved Se and enhanced the reactivity of Se. It played an important role in controlling the nucleation and growth of AgCuSe nanorods.  相似文献   

18.
Well-segregated bismuth sulfide (Bi2S3) nanorods with a high order of crystallinity have been successfully prepared from bismuth(III) monosalicylate [BiO(C7H5O3)] by a simple hydrothermal reaction in H2O at 180 °C. Bismuth(III) monosalicylate and thioglycolic acid act as the starting materials. The products were characterized by powder X-ray diffraction, Ultraviolet–Visible (UV–Vis) spectroscopy, transmission electron microscopy photoluminescence spectroscopy, and Fourier transform infrared spectra. The powder X-ray diffraction pattern shows the product belongs to the orthorhombic Bi2S3 phase. Their UV–Vis spectrum shows the absorbance at 328 nm, with its direct energy band gap of 2.6 eV. Bismuth salicylate, which is known to be a complex, may play a critical role as a precursor and a template for the growth of linear bismuth sulfide nanorods. Finally the influences of the reaction conditions are discussed and a possible mechanism for the formation of Bi2S3 nanorods is proposed.  相似文献   

19.
The antimony doping in SnO2 thin films prepared by the sol-gel dip-coating method has been studied using two characterization techniques. In order to determine the actual doping level directly in the deposited layers, X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS) have been used. We found that this doping level is systematically lower than expected from the starting solutions composition, and that two oxidation states are present: Sb3+ and Sb5+. As the antimony content increases, there is a competition between Sb5+ and Sb3+ species.The SnO2: Sb thin films have also been observed by transmission electron microscopy (TEM), showing that the measured mean size of crystallites decreases as the Sb content increases in the oxide. No precipitates of either Sn or Sb oxides (other than SnO2) could be detected.  相似文献   

20.
This article reports on the fabrication of WO(3) nanorods using an efficient straightforward synthetic technique, without a catalyst, and using a single precursor. The thermal dissociation of WO(OMe)(4) at 700 degrees C in a closed Swagelok cell under an air/inert atmosphere yielded W(18)O(49) nanorods. Annealing of W(18)O(49) at 500 degrees C under an air atmosphere led to the formation of pure WO(3) nanorods. The obtained products are characterized by morphological (scanning electron microscopy and transmission electron microscopy), structural (X-ray diffraction analysis, high-resolution scanning electron microscopy, and Raman spectroscopy), and compositional [energy-dispersive X-ray and elemental (C, H, N, S) analysis] measurements. The mechanism of the formation of nonstoichiometric W(18)O(49) nanorods is supported by the measured analytical data and several control experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号