首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of melting on the excitation of Surface Acoustic Wave (SAW) pulses in silicon is studied both theoretically and experimentally. The developed theory of Rayleigh-type SAW laser-induced thermoelastic excitation in a structure composed of a liquid layer on a solid substrate predicts that the SAW is predominantly generated in the solid phase due to the absence of shear rigidity in a liquid. The characteristic changes in the SAW pulse shape as well as the saturation and even the decrease of the SAW pulse amplitude observed above the melting threshold are explained theoretically to be a result of the decrease of the heat flux into the solid phase as well as due to the decrease of the volume of the solid phase caused by melting. Although the heat flux into the solid phase is decreased both as a consequence of the reflectivity increase and the additional energy losses (latent heat of melting) at the phase transition, it is demonstrated that the influence of reflectivity changes on the SAW pulse is negligible in comparison with the effect of melt-front motion. For laser pulses of 7 ns duration at 355 nm, the threshold value of laser fluence for meltingF m=0.23±0.04 J/cm2 and for the ablationF a=1.3±0.2 J/cm2 were determined experimentally as the points of characteristic changes in the observed SAW pulses.  相似文献   

2.
V. N. Tokarev 《Laser Physics》2006,16(9):1291-1307
This paper reviews recent results on modeling UV nanosecond laser ablation. Particular attention is given to a viscous liquid flow driven by ablation pressure. Based on the analysis of the Navier-Stokes equation, various strongly different manifestations of this phenomenon are explained. These are (i) a “clean” laser ablation, when the laser spot has a clean sharp spot border free of resolidified melt dross; (ii) a new form of material removal in laser ablation, expulsion on a poly(methyl methacrylate) target of long (up to 1 mm) nanofibers with a radius about 150–200 nm to the exterior of the spot under the action of a single pulse of a KrF excimer laser; and (iii) a new method of laser surface nanostructuring, the formation of a surface foam having a structure of micropores interconnected by nanofilaments with diameters of about 100 nm as a result of single-pulse KrF laser ablation of biopolymer films.  相似文献   

3.
P-Si layers on c-Si substrate with a thermo-insulating coating (TIC) were irradiated by the 50-ns second harmonic of an Nd-glass laser. Time-resolved measurements, optical microscopy (OM) and scanning electron microscopy (SEM) data for samples with a 0.1–0.9 m p-Si layer and a 0.1 m SiO2 or 0.16 m Si3N4 TIC layer show that if the p-Si layers melt throughout the depth the solidification starts from the surface as well as from the rear. The latent heat released upon coarse grain growth from the rear prevents further crystallization near the top surface and results in partial or complete remelting of the solid phase on the surface.  相似文献   

4.
The long pulse operation of ultraviolet (UV) laser attributed to multi-reflection is presented on an acousto-optic (AO) Q-switched ultraviolet laser system blocking green light inside a cavity. The ultraviolet laser with the highest average power of 456 mW is obtained with 20 kHz repetition-rate. The numerical simulation of UV pulse broadening was studied using Gaussian curve approximation. The conclusion suggests that the short multi-reflected cavity and high incident pump power will be beneficial to alleviate the width broadening effect. The results, for the first time, would provide the technology for controlling the pulse width of an AO Q-switched DUV laser.  相似文献   

5.
研究了在不同气体环境下,利用532 nm Nd∶YAG纳秒脉冲激光累积辐照单晶硅表面形成的微结构,结果表明,在其他条件相同,背景气体不同的情况下,背景气体对硅表面形貌的形成起着重要的作用。具体分析了真空、N2和SF6 3种环境气氛下形成的微结构,结果显示,在SF6中形成的锥形微结构的数密度比在N2和真空中的大,并且锥形具有更大的纵横比;在N2、真空和SF6中形成的微结构尺寸依次减小。SF6气氛下,激光辅助化学刻蚀的效率比在真空和N2气氛中的高。另外,辐照区域边缘有波纹微结构形成,分析认为,该微结构的形成是由表面张力波的冷却导致的。  相似文献   

6.
研究了在不同气体环境下,利用532nmNd:YAG纳秒脉冲激光累积辐照单晶硅表面形成的微结构,结果表明,在其他条件相同,背景气体不同的情况下,背景气体对硅表面形貌的形成起着重要的作用。具体分析了真空、N2和SF6 3种环境气氛下形成的微结构,结果显示,在sF6中形成的锥形微结构的数密度比在N2和真空中的大,并且锥形具有更大的纵横比;在N2、真空和sF6中形成的微结构尺寸依次减小。sF6气氛下,激光辅助化学刻蚀的效率比在真空和N2气氛中的高。另外,辐照区域边缘有波纹微结构形成,分析认为,该微结构的形成是由表面张力波的冷却导致的。  相似文献   

7.
This article presents experimental results supported by advanced three-dimensional modeling for the dynamics emerging from the interaction of nanosecond laser pulses with thin metal films on dielectric substrates, especially at the melting and ablation regimes. Matter dynamics, such as the generation and propagation of surface acoustic waves and permanent deformations, are imaged with the use of a very high spatial and temporal resolution interferometric method accompanied by white-light interferometry. A three-dimensional finite element model is developed aiming to fully describe the spatiotemporal dynamics and predict with high accuracy the thermo-mechanical phenomena around melting and ablation regimes where phase changes take place. The ability of very high spatial and temporal resolution, the whole-field three-dimensional imaging as well as the simultaneous study of the laser pulse–thin film interaction regimes, makes this study valuable for applications where detailed knowledge of the thermo-mechanical behavior of matter under pulsed laser excitation is critical.  相似文献   

8.
Nd:YAG纳秒激光诱导硅表面微结构的演化   总被引:2,自引:0,他引:2       下载免费PDF全文
利用Nd:YAG纳秒激光(波长为532和355 nm)对单晶硅在真空中进行了累积脉冲辐照,研究了表面微结构的演化情况.在激光辐照的初始阶段,532和355 nm激光脉冲均在硅表面诱导出了波纹结构,后者辐照硅表面后形成了近似同心但稍显混乱的环形波纹结构.随着脉冲数的增加,波纹结构逐渐演化为一种类似珠形的凹凸结构,最后形成准规则排列的微米量级锥形结构,该微结构的生长依赖于表面张力波和结构自组织.分析发现,形成的交叉环形结构主要是在355 nm激光辐照硅的过程中,表面张力波导致波纹结构部分叠加的结果.  相似文献   

9.
The photoluminescence (PL) spectra and kinetics of erbium-doped layers of silicon nanocrystals dispersed in a silicon dioxide matrix (nc-Si/SiO2) are studied. It was found that optical excitation of nc-Si can be transferred with a high efficiency to Er3+ ions present in the surrounding oxide. The efficiency of energy transfer increases with increasing pumping photon energy and intensity. The process of Er3+ excitation is shown to compete successfully with nonradiative recombination in the nc-Si/SiO2 structures. The Er3+ PL lifetime was found to decrease under intense optical pumping, which implies the establishment of inverse population in the Er3+ system. The results obtained demonstrate the very high potential of erbium-doped nc-Si/SiO2 structures when used as active media for optical amplifiers and light-emitting devices operating at a wavelength of 1.5 μm.  相似文献   

10.
The optimal regimes for uniform texturing of a multicrystalline silicon (mc-Si) surface by pulsed laser radiation have been determined. The morphology and reflectance spectra of the texturized mc-Si have been studied. The laser-texturized mc-Si samples with reflectance of 2?C3% over a wide spectral region have been produced. The influence of subsequent chemical etching on the reflective properties of the texturized surface has been analyzed.  相似文献   

11.
12.
An analytical model is derived to describe the stress mechanism in a thin film against the laser-induced damage threshold (LIDT) based on the thermal transfer equation. Different structures of high-reflection films at 355 nm are prepared to validate this model. LIDTs are found to have a linear relationship with stress. Furthermore, predictions from the simple model agree with the experiments.  相似文献   

13.
The production of periodic structures in silicon wafers by four-beam is presented. Because laser interference ablation is a single-step and cost-effective process, there is a great technological interest in the fabrication of these structures for their use as antireflection surfaces. Three different laser fluences are used to modify the silicon surface (0.8 J cm−2, 1.3 J cm−2, 2.0 J cm−2) creating bumps in the rim of the irradiated area. Laser induced periodic surface structures (LIPSS), in particular micro and nano-ripples, are also observed. Measurements of the reflectivity show a decrease in the reflectance for the samples processed with a laser fluence of 2.0 J cm−2, probably caused by the appearance of the nano-ripples in the structured area, while bumps start to deteriorate.  相似文献   

14.
Channels are traditionally machined in materials by drilling from the front side into the bulk. The processing rate can be increased by two orders of magnitude for transparent materials by growing the channel from the rear side. The process is demonstrated using nanosecond laser pulses to drill millimeter-sized channels through thick silica windows. Absorbing defects are introduced onto the rear surface to initiate the coupling of energy into the material. Laser drilling then takes place when the fluence exceeds a threshold. The drilling rate increases linearly with fluence above this threshold. While UV light drills about four times faster than IR light, the pulse length (in the nanosecond regime) and the pulse repetition rate (in the 0.1–10 Hz range) do not greatly influence the drilling rate per pulse. Drilling rates in excess of 100 μm per pulse are achieved by taking advantage of the propagation characteristics of the plasma created at the drilling front. The plasma during rear-side drilling generates a laser-supported detonation wave into the bulk material. The geometry also seems to increase the efficiency of the laser-induced plasma combustion and shock wave during the pulse by confining it in front of the channel tip. Received: 1 July 1999 / Accepted: 17 April 2000 / Published online: 20 September 2000  相似文献   

15.
在SF6气氛下,分别利用钛宝石飞秒脉冲激光与掺钕钇铝石榴石纳秒脉冲激光对单晶硅表面进行了微构造和重掺杂,以用于光伏材料。对制备的单晶硅表面微结构的形貌、结晶性和硫元素杂质含量与分布进行了研究。实验结果表明纳秒脉冲激光制备的单晶硅表面微结构的薄层电阻较小,缺陷密度较低(结晶性高),硫元素杂质含量较高且在表面分布的范围较广,深度较大(约1 m)。此外,材料的可见-近红外波段吸收率可接近80%。基于纳秒脉冲激光微构造的单晶硅的优异性能,在样品表面制备了有效光照面积达8 cm2的太阳能电池。其中,最佳太阳能电池的串联电阻、开路电压、短路电流密度分别为0.5 , 503 mV, 35 mA/cm2,转换效率约12%。上述太阳能电池性能还可通过优化制备工艺进一步提高。  相似文献   

16.
在SF6气氛下,分别利用钛宝石飞秒脉冲激光与掺钕钇铝石榴石纳秒脉冲激光对单晶硅表面进行了微构造和重掺杂,以用于光伏材料。对制备的单晶硅表面微结构的形貌、结晶性和硫元素杂质含量与分布进行了研究。实验结果表明纳秒脉冲激光制备的单晶硅表面微结构的薄层电阻较小,缺陷密度较低(结晶性高),硫元素杂质含量较高且在表面分布的范围较广,深度较大(约1 m)。此外,材料的可见-近红外波段吸收率可接近80%。基于纳秒脉冲激光微构造的单晶硅的优异性能,在样品表面制备了有效光照面积达8 cm2的太阳能电池。其中,最佳太阳能电池的串联电阻、开路电压、短路电流密度分别为0.5 , 503 mV, 35 mA/cm2,转换效率约12%。上述太阳能电池性能还可通过优化制备工艺进一步提高。  相似文献   

17.
We have investigated the optical properties of silicon pillars formed by cumulative nanosecond pulsed excimer laser irradiation of single-crystal silicon in vacuum created under different repetition rates. The changes in optical characteristics of silicon pillar were systematically determined and compared as the number of KrF laser shots was increased from 1 to 15,000.The results show that silicon pillar PL curves exhibit a blue band around 430 nm and an ultraviolet band peaking at 370 nm with the vanishing of the green emission at 530 nm. A correlation between the intensity of the blue PL band and the intensity of the Si-O absorption bands has been exploited to explain such emission, whereas, the origin of the ultraviolet band may be attributed to different types of defects in silicon oxide.  相似文献   

18.
杨海贵  戴振文  祖宁宁 《中国物理》2007,16(6):1650-1654
This paper reports that the ultraviolet and visible upconversion luminescence from the ^4S3/2, ^2G9/2 and ^2P3/2 levels have been observed in Er^3+:YAG following 647.2 nm excitation of the ^4F9/2 multiple. Upconversion luminescence intensity dependence on pump power was recorded. The measured decay profiles were theoretically fitted by kinetics theory and the basically good agreements were achieved. The results indicate that some energy transfer processes proposed to explain the observed upconversion phenomena are reasonable.  相似文献   

19.
Transients of the photoluminescence (1.54 μm) of Er3+ ions embedded in an amorphous silicon matrix excited with intensive laser pulses are simulated using a phenomenological model which takes into account both the defect-related excitation mechanism and stimulated optical transitions in the ions. The simulated transients are compared with the experimental ones observed in Er-doped amorphous silicon layers under pulsed laser excitation. The modeling and the experimental results demonstrate a possibility to realize a regime of superradiance in the system of Er3+ ions pumped via an electronic excitation of the amorphous matrix. Received: 7 August 2001 / Revised version: 1 November 2001 / Published online: 17 January 2002  相似文献   

20.
Acceleration and expulsion of a laser-induced melt layer in laser ablation of polymers is studied based on a combination of a quantitative theoretical modeling of ablation pressure and viscous melt flow with an experimental technique of a precise nanoscale measurement of the resulting surface profile. For two particular examples corresponding to so-called stationary and non-stationary liquid layer flows the following results are obtained: (i) the kinematic viscosity of the laser-induced melt layer on the surface of poly(ethylene terephthalate) at extreme conditions of KrF laser ablation is found for the first time and (ii) a new form of material removal in laser ablation is explained – expulsion of long (up to 1 mm) nanofibers with a radius of about 150–200 nm when a poly(methyl methacrylate) target is irradiated with a single pulse of a KrF excimer laser. PACS 42.62.Cf; 61.80.Ba; 83.80.Ab  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号