首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We will say that a subgroup X of G satisfies property C in G if CG(X?Xg)\leqq X?Xg{\rm C}_{G}(X\cap X^{{g}})\leqq X\cap X^{{g}} for all g ? G{g}\in G. We obtain that if X is a nilpotent subgroup satisfying property C in G, then XF(G) is nilpotent. As consequence it follows that if N\triangleleft GN\triangleleft G is nilpotent and X is a nilpotent subgroup of G then CG(N?X)\leqq XC_G(N\cap X)\leqq X implies that NX is nilpotent.¶We investigate the relationship between the maximal nilpotent subgroups satisfying property C and the nilpotent injectors in a finite group.  相似文献   

2.
By studying the group of self homotopy equivalences of the localization (at a prime p and/or zero) of some aspherical complexes, we show that, contrary to the case when the considered space is a nilpotent, ?m #(Xp ) is in general different from ?m #(X)p. That is the case even when X = K (G, 1) is a finite complex and/or G satisfies extra finiteness or nilpotency conditions, for instance, when G is finite or virtually nilpotent. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Let X be a (real or complex) Banach space with dimension greater than 2 and let B0(X) be the subspace of B(X) spanned by all nilpotent operators on X. We get a complete classification of surjective additive maps Ф on B0(X) which preserve nilpotent operators in both directions. In particular, if X is infinite-dimensional, we prove that Ф has the form either Ф(T) = cATA^-1 or Ф(T) = cAT'A^-1, where A is an invertible bounded linear or conjugate linear operator, c is a scalar, T' denotes the adjoint of T. As an application of these results, we show that every additive surjective map on B(X) preserving spectral radius has a similar form to the above with |c| = 1.  相似文献   

4.
Let K be a field of characteristic zero. For a torsion-free finitely generated nilpotent group G, we naturally associate four finite dimensional nilpotent Lie algebras over K, ? K (G), grad(?)(? K (G)), grad(g)(exp ? K (G)), and L K (G). Let 𝔗 c be a torsion-free variety of nilpotent groups of class at most c. For a positive integer n, with n ≥ 2, let F n (𝔗 c ) be the relatively free group of rank n in 𝔗 c . We prove that ? K (F n (𝔗 c )) is relatively free in some variety of nilpotent Lie algebras, and ? K (F n (𝔗 c )) ? L K (F n (𝔗 c )) ? grad(?)(? K (F n (𝔗 c ))) ? grad(g)(exp ? K (F n (𝔗 c ))) as Lie algebras in a natural way. Furthermore, F n (𝔗 c ) is a Magnus nilpotent group. Let G 1 and G 2 be torsion-free finitely generated nilpotent groups which are quasi-isometric. We prove that if G 1 and G 2 are relatively free of finite rank, then they are isomorphic. Let L be a relatively free nilpotent Lie algebra over ? of finite rank freely generated by a set X. Give on L the structure of a group R, say, by means of the Baker–Campbell–Hausdorff formula, and let H be the subgroup of R generated by the set X. We show that H is relatively free in some variety of nilpotent groups; freely generated by the set X, H is Magnus and L ? ??(H) ? L ?(H) as Lie algebras. For relatively free residually torsion-free nilpotent groups, we prove that ? K and L K are isomorphic as Lie algebras. We also give an example of a finitely generated Magnus nilpotent group G, not relatively free, such that ??(G) is not isomorphic to L ?(G) as Lie algebras.  相似文献   

5.
Let X be a 1-connected CW-complex of finite type and ε?(X) be the group of homotopy classes of self-equivalences of X which induce the identity on homotopy groups. In this paper, we prove that every finitely generated 2-solvable rational nilpotent group is realizable as ε?(X) where X is the rationalization of a 1-connected CW-complex of finite type.  相似文献   

6.
LetX be any compact convex subset of a locally convex Hausdorff space andE be a complex Banach space. We denote byA(X, E) the space of all continuous and affineE-valued functions defined onX. In this paper we prove thatX is a Choquet simplex if and only if the dual ofA(X, E) is isometrically isomorphic by a selection map toM m (X, E*), the space ofE*-valued,w*-regular boundary measures onX. This extends and strengthens a result of G. M. Ustinov. To do this we show that for any compact convex setX, each element of the dual ofA(X, E) can be represented by a measure inM m (X, E*) with the same norm, and this representation is unique if and only ifX is a Choquet simplex. We also prove that ifX is metrizable andE is separable then there exists a selection map from the unit ball of the dual ofA(X, E) into the unit ball ofM m (X, E*) which is weak* to weak*-Borel measurable.This work will constitute a portion of the author's Ph.D. Thesis at the University of Illinois.  相似文献   

7.
In this paper we study the spaces ∞p(E, X) of p-lattice summing operators from a Banach space E to a Banach lattice X. The main results characterize those E and X for which Δp(E, X) = IIp(E, X) and we show that ∞(E, X)=Δ2(E, X) for an infinite dimensional Banach lattice X of finite cotype if and only if E is isomorphic to a Hilbert space.  相似文献   

8.
Let X be a locally compact topological space and (X, E, Xω) be any triple consisting of a hyperfinite set X in a sufficiently saturated nonstandard universe, a monadic equivalence relation E on X, and an E-closed galactic set XωX, such that all internal subsets of Xω are relatively compact in the induced topology and X is homeomorphic to the quotient Xω/E. We will show that each regular complex Borel measure on X can be obtained by pushing down the Loeb measure induced by some internal function X ? *\Bbb CX \rightarrow {}{^{\ast}{\Bbb C}} . The construction gives rise to an isometric isomorphism of the Banach space M(X) of all regular complex Borel measures on X, normed by total variation, and the quotient Mw(X)/M0(X){\cal M}_{\omega}(X)/{\cal M}_0(X) , for certain external subspaces M0(X), Mw(X){\cal M}_0(X), {\cal M}_{\omega}(X) of the hyperfinite dimensional Banach space *\Bbb CX{}{^{\ast}{\Bbb C}}^X , with the norm ‖f‖1 = ∑xX |f(x)|. If additionally X = G is a hyperfinite group, Xω = Gω is a galactic subgroup of G, E is the equivalence corresponding to a normal monadic subgroup G0 of Gω, and G is isomorphic to the locally compact group Gω/G0, then the above Banach space isomorphism preserves the convolution, as well, i.e., M(G) and Mw(G)/M0(G){\cal M}_{\omega}(G)/{\cal M}_0(G) are isometrically isomorphic as Banach algebras.  相似文献   

9.
LetX be a Hausdorff zero-dimensional topological space,K(X) the algebra of all clopen subsets of X, E a Hausdorff locally convex space over a non-Archimedean valued field and C b (X) the space of all bounded continuous -valued functions on X. The space M(K(X),E), of all bounded finitely-additive measures m: K(X) → E, is investigated. If we equip C b (X) with the topologies β o , β, β u , τ b or β ob , it is shown that, for E (compete, the corresponding spaces of continuous linear operators from C b (X) to E (are algebraically isomorphic to certain subspaces of M(K(X),E). The text was submitted by the author in English.  相似文献   

10.
《Quaestiones Mathematicae》2013,36(3-4):303-309
Abstract

For a completely regular space X and a normed space E let Ck (x, E) (resp., Cp (x, E)) be the set of all E-valued continuous maps on X endowed with the compact-open (resp., pointwise convergence) topology. It is shown that the set of all F-valued linear continuous maps on Ck (x, E) when equipped with the topology of uniform convergence on the members of some families of bounded subsets of Ck (x, E) is a complete uniform space if F is a Band space and X is Dieudonné complete. This result is applied to prove that Dieudonné completeness is preserved by linear quotient surjections from Ck (x, E) onto Ck (Y, E) (resp., from Cp (x, E) onto Cp (x, E)) provided E, F are Band spaces and Y is a k-space.  相似文献   

11.
《Optimization》2012,61(2):401-421
Abstract

We study the efficient set X E for a multiple objective linear program by using its projection into the linear space L spanned by the independent criteria. We show that in the orthogonally complementary space of L, the efficient points form a polyhedron, while in L an efficiency-equivalent polyhedron for the projection P(X E ) of X E can be constructed by algorithms of outer and inner approximation types. These algorithms can be also used for generating all extreme points of P(X E ). Application to optimization over the efficient set for a multiple objective linear program is considered.  相似文献   

12.
13.
Summary If X 1, X 2, ..., are i.i.d. random variables and Y n =Max(X 1, ..., X n ); if for some sequences A n , Bn, n=1, 2, ..., E n (t)=AnY[nt]+Bn is such that E n (1) weakly converges to a non degenerate limit distribution, then we prove that it is possible to construct a sequence of replicates of extremal processes E (n)(t) on the same probability space, such that d(E n (.), E (n)(.))0 a.s., with the Levy metric. We give the rates of consistency of the approximations.  相似文献   

14.
A proof (by Serre and by Cohen, Griess and Lisser) verified, in the special case of E 8, a conjecture of mine, that the finite projective group L 2(61) embeds in E8( \mathbbC ) {E_8}\left( \mathbb{C} \right) . Subsequently, Griess and Ryba have shown (using computers) that L 2(49) and, in addition, (established by Serre without computers) L 2(41) also embed in E8( \mathbbC ) {E_8}\left( \mathbb{C} \right) . That is, if K = 30, 24, 20 and kK then L 2(2k + 1) embeds in E8( \mathbbC ) {E_8}\left( \mathbb{C} \right) . In this paper we show that the “Borel” subgroup B(k) of L 2(2k + 1), kK, has a uniform construction. The theorem uses a result of T. Springer on the existence in E8( \mathbbC ) {E_8}\left( \mathbb{C} \right) of three regular elements of the Weyl group, having orders kK, and associated to the regular, subregular and subsubregular nilpotent elements. Springer’s result generalizes (in the E 8 case) a 1959 general result of mine relating the principal nilpotent element with the Coxeter element.  相似文献   

15.
Let f : UX be a map from a connected nilpotent space U to a connected rational space X. The evaluation subgroup G *(U, X; f), which is a generalization of the Gottlieb group of X, is investigated. The key device for the study is an explicit Sullivan model for the connected component containing f of the function space of maps from U to X, which is derived from the general theory of such a model due to Brown and Szczarba (Trans Am Math Soc 349, 4931–4951, 1997). In particular, we show that non Gottlieb elements are detected by analyzing a Sullivan model for the map f and by looking at non-triviality of higher order Whitehead products in the homotopy group of X. The Gottlieb triviality of a fibration in the sense of Lupton and Smith (The evaluation subgroup of a fibre inclusion, 2006) is also discussed from the function space model point of view. Moreover, we proceed to consideration of the evaluation subgroup of the fundamental group of a nilpotent space. In consequence, the first Gottlieb group of the total space of each S 1-bundle over the n-dimensional torus is determined explicitly in the non-rational case.   相似文献   

16.
Let X be a normal projective variety defined over an algebraically closed field k. Let |O X (1)| be a very ample invertible sheaf on X. Let G be an affine algebraic group defined over k. Let E G and F G be two principal G-bundles on X. Then there exists an integer n > > 0 (depending on E G and F G ) such that if the restrictions of E G and F G to a curve C ∈ |O X (n)| are isomorphic, then they are isomorphic on all of X.  相似文献   

17.
Let be the Kac–Moody algebra associated to the affine Cartan matrix E6(1). Each nilpotent Lie algebra of type E6(1) is isomorphic to a quotient of the positive part of . We determine the isomorphism classes of nilpotent Lie algebras of type E6(1).  相似文献   

18.
Elizabeth Gasparim 《代数通讯》2013,41(10):4919-4926
Consider the blow upπ [Xtilde]Xof a complex surface Xat a point. Let [Etilde] be a holomorphic bundle on [Xtilde]whose restriction to the exceptional divisor is O(j)n ? O(-j), and define E+(π* E*)vv. Friedman and Morgan gave the following bounds for the second Chern classes jc 2([Etilde])- c 2(E) ≤ j 2We show that these bounds are sharp.  相似文献   

19.
Let E be a subspace of C(X) and define R(E):={g/h: g,hE;h>0}. We prove that R(E) is dense in C(X) if for every X 0X there exists xX 0 such that E contains an approximation to a -function at the point x on the set X 0. We use this principle to study the density of Müntz rationals in two variables.  相似文献   

20.
A Banach space X will be called extensible if every operator EX from a subspace EX can be extended to an operator XX. Denote by dens X. The smallest cardinal of a subset of X whose linear span is dense in X, the space X will be called automorphic when for every subspace EX every into isomorphism T: EX for which dens X/E = dens X/TE can be extended to an automorphism XX. Lindenstrauss and Rosenthal proved that c 0 is automorphic and conjectured that c 0 and ℓ2 are the only separable automorphic spaces. Moreover, they ask about the extensible or automorphic character of c 0(Γ), for Γ uncountable. That c 0(Γ) is extensible was proved by Johnson and Zippin, and we prove here that it is automorphic and that, moreover, every automorphic space is extensible while the converse fails. We then study the local structure of extensible spaces, showing in particular that an infinite dimensional extensible space cannot contain uniformly complemented copies of ℓ n p , 1 ≤ p < ∞, p ≠ 2. We derive that infinite dimensional spaces such as L p (μ), p ≠ 2, C(K) spaces not isomorphic to c 0 for K metric compact, subspaces of c 0 which are not isomorphic to c 0, the Gurarij space, Tsirelson spaces or the Argyros-Deliyanni HI space cannot be automorphic. The work of the first author has been supported in part by project MTM2004-02635  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号