首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Visualizing optical properties, such as the optical absorption coefficient, helps us to obtain structural information of biological tissues. In this paper, we present an efficient reconstruction algorithm for optical energy deposition in backward optoacoustic imaging. Note that econstruction of optical energy deposition is the first step to imaging the optical absorption coefficient distribution. This algorithm is derived from the optoacoustic wave equations with line focusing, in which the focusing techniques were utilized to reduce the reconstruction problem from three dimensions (3-D) to one dimension (1-D). Simulations and experiments were conducted to verify efficacy of this algorithm. In the simulations, optoacoustic signals were generated based on the solution of the optoacoustic wave equations. In the experiments, a 3-D backward mode optoacoustic imaging system was built. The system consisted of a Nd YAG laser for optical irradiation and an acoustic detection system with a broadband hydrophone. A phantom was used to illustrate validity of the proposed algorithm. The results show that optical energy deposition can be efficiently reconstructed in both simulations and experiments.  相似文献   

2.
Liao CK  Li ML  Li PC 《Optics letters》2004,29(21):2506-2508
Optoacoustic imaging takes advantage of high optical contrast and low acoustic scattering and has found several biomedical applications. In the common backward mode a laser beam illuminates the image object, and an acoustic transducer located on the same side as the laser beam detects the optoacoustic signal produced by thermoelastic effects. A cross-sectional image is formed by laterally scanning the laser beam and the transducer. Although the laser beam width is generally narrow to provide good lateral resolution, strong optical scattering in tissue broadens the optical illumination pattern and thus degrades the lateral resolution. To solve this problem, a combination of the synthetic aperture focusing technique with coherence weighting is proposed. This method synthesizes a large aperture by summing properly delayed signals received at different positions. The focusing quality is further improved by using the signal coherence as an image quality index. A phantom comprising hair threads in a 1% milk solution was imaged with an optoacoustic imaging system. The results show that the proposed technique improved lateral resolution by 400-800% and the signal-to-noise ratio by 7-23 dB over conventional techniques.  相似文献   

3.
Optoacoustic (OA) imaging utilizes short laser pulses to create acoustic sources in tissue and time resolved detection of generated pressure profiles for image reconstruction. The ultrasonic transients provide information on the distribution of optical absorption coefficient that can be useful for early cancer diagnostics. In this work a new design of wide-band array transducer is developed and tested. The array consists of 32 focused piezo-elements made of PVDF slabs imposed on a cylindrical surface. A single array element response to an OA signal coming from arbitrarily located point source is investigated theoretically and experimentally. The measured signals correspond well to numerically calculated ones. Focal zone maps of the elements with aperture angles 30 degrees and 60 degrees are presented and discussed; the resolution in direction perpendicular to the imaging plane is determined. Point spread function of the whole array is calculated using experimentally obtained signals from the sources located at different distances from the array. Backprojection algorithm is employed for reconstruction of the optoacoustic images. It is shown that the spatial resolution of the images yielded by the proposed array increases significantly compared to previous transducer designs.  相似文献   

4.
The optoacoustic method has been shown to be an accurate technique for the measurement of the properties of submicron metal coatings deposited on a dielectric substrate, i.e., mirrors. The method has been previously theoretically described in terms of a linear model of optoacoustic transformation in a system substrate/coating/liquid. The goal of the present work was to determine the limits at which the linear model is still applicable. The modification of the laser induced acoustic signal profiles and transfer functions of optoacoustic transformation versus the laser fluence was studied for two liquids: ethanol and water.  相似文献   

5.
张宇  唐志列  吴泳波  束刚 《物理学报》2015,64(24):240701-240701
基于声透镜的光声成像系统中, 由样品的光声压分布等效样品的吸收分布, 进行光声像重建, 但之前的这种等效是一种近似, 理论上并不准确. 本文阐述了声透镜三维光声成像的基本原理, 揭示了声透镜像面上光声压信号的时间分布与样品轴向吸收分布之间的关系; 提出用积分法和希尔伯特变换提取光声信号瞬时值法, 解调样品吸收系数分布并重建光声像; 实验上, 对不同样品分别用积分法和希尔伯特变换法获取样品的吸收系数, 重建光声像的横向和轴向分辨率均约为1 mm, 实现了真正的三维快速光声成像.  相似文献   

6.
The methods of time-resolved laser optoacoustic tomography of inhomogeneous media and related problems are reviewed. Time-resolved laser optoacoustic tomography allows one to measure the distribution of light absorption in turbid media with depth resolution up to several microns in real time. The theory of laser excitation of acoustic waves by absorbing of light in particles, dispersed in transparent, light-absorbing or scattering media, is developed. The distribution of light absorption can be obtained from the temporal course of acoustic pressure. Two schemes of acoustic wave detection — in the medium under testing (direct detection) and in transparent medium, coupled to the investigated one (indirect detection) — are discussed. In both cases the reconstruction of light absorption can be made by simple calculations. Test experiments with homogeneous and layered media confirm the proposed theoretical models and the possibility of using the proposed experimental schemes. Light absorption in homogeneous, inhomogeneous media and in absorbing particles dispersed in turbid media was investigated. The experimental setup allows one to measure the absorption coefficients over the range 1-500 cm–1 with the depth resolution 10–15 m over the depth 1–1.5 mm.  相似文献   

7.
《Applied Surface Science》2002,185(3-4):277-288
Laser cleaning is an optodynamic process in which the optically induced removal of a liquid or a solid contaminant from a substrate is accompanied by a optoacoustic wave in the surrounding air. In our experiments we used both dry and steam laser-cleaning techniques for various samples. Optoacoustic wave, produced by the abrupt heating and detachment of the contaminants, was observed with a probe-beam deflection technique. We determined two characteristic parameters of the optoacoustic wave: the amplitude and the time-of-flight of the acoustic signal. With an analysis of these waves we also determined possible generating mechanisms. The decrease of the amplitude and the velocity of propagation, which approaches sonic speed, of the consecutive waves indicate that the dynamics during the laser-cleaning process is progressively weakened. The cleaning process is over when both the parameters reach a constant value, so with measuring optoacoustic waves the progress of the cleaning process could be observed on-line.  相似文献   

8.
Three types of reconstruction algorithms for the optoacoustic tomography of biological tissues, based on delay-and-sum beam-forming, Fourier transform, and time reversal, are proposed. The comparison, based on both numerical and experimental data, shows the advantages of the delay-and-sum beam-forming method, which ensures acceptable computation time and improved quality of the reconstructed image.  相似文献   

9.
李华星  林机 《物理学报》2011,60(12):124201-124201
研究了布拉格光栅中光波和声波的相互作用. 利用多重尺度方法,将光声耦合方程约化为非线性薛定谔方程,并给出了单光声孤子和双光声孤子近似解析解. 进一步讨论了光声孤子抑制光速的机理和双光声孤子的相互作用性质. 关键词: 布拉格光栅 光声耦合 多重尺度方法 光声孤子  相似文献   

10.
时域光声谱技术及其在生物组织检测中的应用   总被引:4,自引:2,他引:2  
当强度调制的光束照射于吸收物质,周期性热流使周围的介质热胀冷缩而激发声波,这种将光能转化为声能的现象称为光声效应。基于光声效应的时域光声谱技术将光学和声学有机地结合,为生物组织的无损检测技术提供了新的检测手段。该技术能够实现类似光学技术的高对比度和近似于声学技术的高精度和穿透深度,在生物医学检测中具有广阔的应用前景。文章介绍时域光声谱技术的原理及其在生物组织成分检测和层析成像检测中的应用。  相似文献   

11.
The possibility models of mathematical methods of morphological image analysis are considered. In particular, a solution of the possibility-theoretical image classification problem is obtained. The solution can be used for acoustic signal analysis in geophysics [1], satellite images interpretation [2], etc. Methods for the empirical reconstruction of fuzzy shapes are developed.  相似文献   

12.
Numerical investigation of a point spread function for a optoacoustic transducer array is described. Analysis of the minimal reconstructed dimension for an optoacoustic image of a point source of spherical waves is performed within the proposed approach. The influence of the array geometrical parameters, number of array transducers, and the frequency band of a single transducer on the lateral resolution in the image plane is investigated in detail. It is demonstrated that the lateral resolution obtained with the help of a transducer array in the image plane is determined unambiguously by the frequency band of a transducer, the flare angle of the array, and the transducer width and does not depend on the number of transducers.  相似文献   

13.
Computer-aided tomography is a technique for providing a two-dimensional cross-sectional view of a three-dimensional object through the digital processing of many one-dimensional views (or projections) taken at different look directions. In acoustic reflection tomography, insonifying the object and then recording the backscattered signal provides the projection information for a given look direction (or aspect angle). Processing the projection information for all possible aspect angles enables an image to be reconstructed that represents the two-dimensional spatial distribution of the object's acoustic reflectivity function when projected on the imaging plane. The shape of an idealized object, which is an elliptical cylinder, is reconstructed by applying standard backprojection, Radon transform inversion (using both convolution and filtered backprojections), and direct Fourier inversion to simulated projection data. The relative merits of the various reconstruction algorithms are assessed and the resulting shape estimates compared. For bandpass sonar data, however, the wave number components of the acoustic reflectivity function that are outside the passband are absent. This leads to the consideration of image reconstruction for bandpass data. Tomographic image reconstruction is applied to real data collected with an ultra-wideband sonar transducer to form high-resolution acoustic images of various underwater objects when the sonar and object are widely separated.  相似文献   

14.
孟琪  孙正 《中国光学》2021,(2):307-319
在生物组织光声层析成像(Photoacoustic?Tomography,?PAT)算法中,为了简化问题,通常假设在均匀和稳定照明的理想情况下,重建组织的初始声压分布图、光吸收能量分布图和光学特性参数分布图.但在实际应用中,当光在生物组织中传播时,会出现光衰减和光通量分布不均匀的情况,导致重建精度下降.本文对非理想条件...  相似文献   

15.
Optoacoustic imaging is based on the generation of thermoelastic stress waves by heating an object in an optically heterogeneous medium with a short laser pulse. The stress waves contain information about the distribution of structures with preferential optical absorption. Detection of the waves with an array of broadband ultrasound detectors at the surface of the medium and applying a backprojection algorithm is used to create a map of absorbed energy inside the medium. With conventional reconstruction methods a large number of detector elements and filtering of the signals are necessary to reduce backprojection artifacts. As an alternative this study proposes an iterative procedure. The algorithm is designed to minimize the error between measured signals and signals calculated from the reconstructed image. In experiments using broadband optical ultrasound detectors and in simulations the algorithm was used to obtain three-dimensional images of multiple optoacoustic sources. With signals from a planar array of 3x3 detector elements a significant improvement was observed after about 10 iterations compared to the simple radial backprojection. Compared to conventional methods using filtered backprojection, the iterative method is computationally more intensive but requires less time and instrumentation for signal acquisition.  相似文献   

16.
We present experimental and calculational results demonstrating the thermoelastic generation of shear acoustic waves using femtosecond laser pulses in submicrometric isotropic aluminum films. We show that the generation of the shear waves is correlated to the reduction of the width of the optoacoustic source on the surface. The presence of shear waves is related to acoustic diffraction and acoustic mode conversion at the thin film interfaces.  相似文献   

17.
18.
Mezil S  Chigarev N  Tournat V  Gusev V 《Optics letters》2011,36(17):3449-3451
Experiments with an all-optical method for the study of the nonlinear acoustics of cracks in solids are reported. Nonlinear acoustic waves are initiated by the absorption of radiation from a pair of laser beams intensity modulated at two different frequencies. The detection of acoustic waves at mixed frequencies, absent in the frequency spectrum of the heating lasers, by optical interferometry or deflectometry provides unambiguous evidence of the elastic nonlinearity of the crack. The high contrast in crack imaging achieved by remote optical monitoring of the nonlinear acoustic processes is due to the strong dependence of the efficiency of optoacoustic conversion on the state of the crack. The highest acoustic nonlinearity is observed in the transitional state of the crack, which is intermediate between the open and the closed ones.  相似文献   

19.
利用维纳滤波改善声透镜光声成像系统的分辨率   总被引:1,自引:1,他引:0  
为了克服衍射效应对光声成像系统分辨率的限制,需要采用逆卷积方法进行图像反演.从理论上分析了声透镜成像原理,模拟仿真了声透镜的点扩展函数对声透镜成像系统分辨率的影响和维纳滤波解卷积方法复原光声成像的过程,并利用自搭建的声透镜光声成像系统进行了深入的实验研究,得到了物平面上相距4 mm和3 mm的两个黑胶带点的直接成像光声...  相似文献   

20.
The optoacoustic transformation of 5-ns laser pulses was used to excite broadband longitudinal acoustic pulses in a 0.4-mm-thick steel plate. An electromagnetic acoustic transducer that incorporated a flat wire coil with a diameter of 5 mm and an amplifier was proposed as a device for contactless ultrasound detection. A permanent cylindrical magnet and a coil close to the printed-circuit board of an operational amplifier were placed on one side of the sample, thus allowing the detection of the alternating electromagnetic field produced by pressure pulses excited on the opposite side. The frequency spectrum of detected pulses ranged from 5 to 200 MHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号