首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study LpLr restriction estimates for algebraic varieties in d-dimensional vector spaces over finite fields. Unlike the Euclidean case, if the dimension d is even, then it is conjectured that the L(2d+2)/(d+3)L2 Stein–Tomas restriction result can be improved to the L(2d+4)/(d+4)L2 estimate for both spheres and paraboloids in finite fields. In this paper we show that the conjectured LpL2 restriction estimate holds in the specific case when test functions under consideration are restricted to d-coordinate functions or homogeneous functions of degree zero. To deduce our result, we use the connection between the restriction phenomena for our varieties in d dimensions and those for homogeneous varieties in (d+1) dimensions.  相似文献   

2.
3.
Let λf(n) denote the nth normalized Fourier coefficient of the classical holomorphic cusp form of even integral weight k2 for the full modular group SL(2,Z). In this paper, we investigate the average behavior of the power suma2+b2xλf(a2+b2)? for x1, 2?8 and a,b,?Z.  相似文献   

4.
5.
6.
《Applied Mathematics Letters》2005,18(11):1286-1292
First a general model for two-step projection methods is introduced and second it has been applied to the approximation solvability of a system of nonlinear variational inequality problems in a Hilbert space setting. Let H be a real Hilbert space and K be a nonempty closed convex subset of H. For arbitrarily chosen initial points x0,y0K, compute sequences {xk} and {yk} such that xk+1=(1ak)xk+akPK[ykρT(yk)]for ρ>0yk=(1bk)xk+bkPK[xkηT(xk)]for η>0, where T:KH is a nonlinear mapping on K,PK is the projection of H onto K, and 0ak,bk1. The two-step model is applied to some variational inequality problems.  相似文献   

7.
8.
Let q be a positive integer. Recently, Niu and Liu proved that, if nmax?{q,1198?q}, then the product (13+q3)(23+q3)?(n3+q3) is not a powerful number. In this note, we prove (1) that, for any odd prime power ? and nmax?{q,11?q}, the product (1?+q?)(2?+q?)?(n?+q?) is not a powerful number, and (2) that, for any positive odd integer ?, there exists an integer Nq,? such that, for any positive integer nNq,?, the product (1?+q?)(2?+q?)?(n?+q?) is not a powerful number.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
For any positive integers n3, r1 we present formulae for the number of irreducible polynomials of degree n over the finite field F2r where the coefficients of xn1, xn2 and xn3 are zero. Our proofs involve counting the number of points on certain algebraic curves over finite fields, a technique which arose from Fourier-analysing the known formulae for the F2 base field cases, reverse-engineering an economical new proof and then extending it. This approach gives rise to fibre products of supersingular curves and makes explicit why the formulae have period 24 in n.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号