首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 574 毫秒
1.
Two-line ferrihydrite was prepared by two different procedures. In procedure 1, which is widely used, ferrihydrite (named as ferrihydrite-1) was prepared by droping NaOH solution into Fe(III) solution. In procedure 2, which is rarely reported, ferrihydrite (named as ferrihydrite-2) was prepared by adding Fe(III) and NaOH solutions into a certain volume of water simultaneously. The results showed that mixing procedures of Fe(III) and alkaline were critical in the sub-microstructures and the conversion mechanisms of ferrihydrites in the presence or absence of trace Fe(II). The sub-microstructure of ferrihydrite-1 favored the mechanism of its dissolution re-crystallization and hematite nanoparticles with rough surface were obtained. The sub-microstructure of ferrihydrite-2 favored the solid state transformation from ferrihydrite to hematite and hematite nanoparticles with smooth surface were formed. These research results will be helpful for us to control the synthesis of hematite nanoparticles with different surface state.  相似文献   

2.
Hydrous Fe and Mn oxides (HFO and HMO) are important sinks for heavy metals and Pb(II) is one of the more prevalent metal contaminants in the environment. In this work, Pb(II) sorption to HFO (Fe(2)O(3) x nH(2)O, n=1-3) and HMO (MnO(2)) surfaces has been studied with EXAFS: mononuclear bidentate surface complexes were observed on FeO(6) (MnO(6)) octahedra with PbO distance of 2.25-2.35 Angstrom and PbFe(Mn) distances of 3.29-3.36 (3.65-3.76) Angstrom. These surface complexes were invariant of pH 5 and 6, ionic strength 2.8 x 10(-3) to 1.5 x 10(-2), loading 2.03 x 10(-4) to 9.1 x 10(-3) mol Pb/g, and reaction time up to 21 months. EXAFS data at the Fe K-edge revealed that freshly precipitated HFO exhibits short-range order; the sorbed Pb(II) ions do not substitute for Fe but may inhibit crystallization of HFO. Pb(II) sorbed to HFO through a rapid initial uptake ( approximately 77%) followed by a slow intraparticle diffusion step ( approximately 23%) resulting in a surface diffusivity of 2.5 x 10(-15) cm(2)/s. Results from this study suggest that mechanistic investigations provide a solid basis for successful adsorption modeling and that inclusion of intraparticle surface diffusion may lead to improved geochemical transport depiction.  相似文献   

3.
在空气气氛中1200℃温度下合成了Mn3O4-Fe2O3体系的各类样品,并将其快速淬火到室温.X射线粉末衍射(XRD)分析表明这样得到的该体系样品存在三个固溶体Mn3-3xFe3xO4(0.00≤x≤0.278),Mn3-3xFe3xO4(0.291≤x≤0.667)和Mn2-2xFe2xO3(0.89≤x≤1.00).X射线粉末衍射数据的结构精修显示它们分别具有I41/amd空间群的黑锰矿结构、Fd3m空间群的尖晶石结构和R3c空间群的赤铁矿结构.各固溶体之间都存在两相共存的区域.57Fe穆斯堡尔谱数据显示Fe在各个物相中都是Fe3+,在黑锰矿和尖晶石中存在两种结晶学环境不同的Fe3+,而在赤铁矿中只存在一种Fe3+.结合X射线光电子能谱(XPS)的数据,可以认为黑锰矿和尖晶石中的阳离子分布可以用分子式Mn12-+xFex3+[Mnx2+Fex3+Mn32-+3x]O4表示,而赤铁矿为Mn23-+2xFe23x+O3.  相似文献   

4.
Hematite nanoarrays are important photoanode materials. However, they suffer from serious problems of charge transfer and surface states; in particular, the surface states hinder the increase in photocurrent. A previous strategy to suppress the surface state is the deposition of an Fe-free metal oxide overlayer. Herein, from the viewpoint of atomic bonding energy, it is found that the strength of bonding around Fe atoms in the hematite is the key to suppressing the surface states. By treating the surface of hematite with Se and NaBH4, the Fe2O3 transforms to a double-layer nanostructure. In the outer layer, the Fe−O bonding is reinforced and the Fe−Se bonding is even stronger. Therefore, the surface states are inhibited and the increase in the photocurrent density becomes much faster. Besides, the treatment constructs a nanoscale p–n junction to promote the charge transfer. Improvements are achieved in onset potential (0.25 V shift) and in photocurrent density (5.8 times). This work pinpoints the key to suppressing the surface states and preparing a high-efficiency hematite nanoarray, and deepens our understanding of hematite photoanodes.  相似文献   

5.
以高含氮量的苯胺五聚体二羧酸为配体, 在预氧化的泡沫镍上通过溶剂热反应合成了Fe, Co金属有机框架材料Fe/Co-MOF, 再以Fe/Co-MOF为金属源和碳源, 经磷化后制备出一种新型的双金属(Fe, Co)和杂原子(N, P)共掺杂的碳材料Fe/Co/P-NPs. 通过扫描电子显微镜和高分辨透射电子显微镜表征发现, Fe/Co/P-NPs由纳米粒子和纳米片组成, 并且形成Fe2P和Co2P两种晶体. 电化学测试结果表明, Fe/Co/P-NPs在析氢、 析氧及水电解中表现出了优异的多功能催化活性. 在1 mol/L KOH中, Fe/Co/P-NPs在10和100 mA/cm 2电流密度时的析氧过电位分别为270和300 mV, 均小于其它对比材料, 优于负载在泡沫镍上的RuO2. 作为水电解双功能催化剂, Fe/Co/P-NPs仅需1.48 V的电位即可获得10 mA/cm 2的电流密度.  相似文献   

6.
The interaction of metalloproteins with oxides has implications not only for bioanalytical systems and biosensors but also in the areas of biomimetic photovoltaic devices, bioremediation, and bacterial metal reduction. Here, we investigate mitochondrial ferricytochrome c (Cyt c) co-sorption with 0.01 and 0.1 M phosphate on hematite (alpha-Fe2O3) surfaces as a function of pH (2-11). Although Cyt c sorption to hematite in the presence of phosphate is consistent with electrostatic attraction, other forces act upon Cyt c as well. The occurrence of multilayer adsorption, and our AFM observations, suggest that Cyt c aggregates as the pH approaches the Cyt c isoelectric point. In solution, methionine coordination of heme Fe occurs only between pH 3 and 7, but in the presence of phosphate this coordination is retained up to pH 10. Electrochemical evidence for the presence of native Cyt c occurs down to pH 3 and up to pH 10 in the absence of phosphate, and this range is extended to pH 2 and 11 in the presence of phosphate. Cyt c that initially adsorbs to a hematite surface may undergo conformation change and coat the surface with unfolded protein such that subsequently adsorbing protein is more likely to retain the native conformational state. AFM provides evidence for rapid sorption kinetics for Cyt c co-sorbed with 0.01 or 0.1 M phosphate. Cyt c co-sorbed with 0.01 M phosphate appears to unfold on the surface of hematite while Cyt c co-sorbed with 0.1 M phosphate possibly retains native conformation due to aggregation.  相似文献   

7.
Reactions taking place on hematite (α-Fe(2)O(3)) surfaces in contact with aqueous solutions are of paramount importance to environmental and technological processes. The electrochemical properties of the hematite/water interface are central to these processes and can be probed by open circuit potentials and cyclic voltammetric measurements of semiconducting electrodes. In this study, electrochemical impedance spectroscopy (EIS) was used to extract resistive and capacitive attributes of this interface on millimeter-sized single-body hematite electrodes. This was carried out by developing equivalent circuit models for impedance data collected on a semiconducting hematite specimen equilibrated in solutions of 0.1 M NaCl and NH(4)Cl at various pH values. These efforts produced distinct sets of capacitance values for the diffuse and compact layers of the interface. Diffuse layer capacitances shift in the pH 3-11 range from 2.32 to 2.50 μF·cm(-2) in NaCl and from 1.43 to 1.99 μF·cm(-2) in NH(4)Cl. Furthermore, these values reach a minimum capacitance at pH 9, near a probable point of zero charge for an undefined hematite surface exposing a variety of (hydr)oxo functional groups. Compact layer capacitances pertain to the transfer of ions (charge carriers) from the diffuse layer to surface hydroxyls and are independent of pH in NaCl, with values of 32.57 ± 0.49 μF·cm(-2)·s(-φ). However, they decrease with pH in NH(4)Cl from 33.77 at pH 3.5 to 21.02 μF·cm(-2)·s(-φ) at pH 10.6 because of the interactions of ammonium species with surface (hydr)oxo groups. Values of φ (0.71-0.73 in NaCl and 0.56-0.67 in NH(4)Cl) denote the nonideal behavior of this capacitor, which is treated here as a constant phase element. Because electrode-based techniques are generally not applicable to the commonly insulating metal (oxyhydr)oxides found in the environment, this study presents opportunities for exploring mineral/water interface chemistry by EIS studies of single-body hematite specimens.  相似文献   

8.
采用傅里叶变换红外(FT-IR)光谱、X射线光电子能谱(XPS)以及基于周期平面波的密度泛函理论(DFT)分别研究了水杨酸钠在针铁矿或赤铁矿表面上的吸附结构,并将计算得到的光电子能谱移动(CLS)和电荷转移与实验得到的XPS结果进行对比。FT-IR结果表明,水杨酸钠可能以双齿双核(V)和双齿单核(IV)的形式分别吸附于针铁矿或赤铁矿表面。由DFT计算结果可知,水杨酸钠在针铁矿(101)晶面上形成双齿双核化合物(V)的吸附能为-5.46 eV。而水杨酸钠在针铁矿(101)晶面上形成双齿单核化合物(IV)的吸附能为3.80 eV,因此水杨酸钠在针铁矿上基本不以双齿单核化合物(IV)构型存在。水杨酸钠在赤铁矿(001)晶面上形成双齿单核化合物(IV)时吸附能为-4.07 eV,说明水杨酸钠在赤铁矿(001)晶面上形成了双齿单核化合物(IV)。另外,理论计算的针铁矿(101)晶面上吸附位点铁原子的Fe 2p的CLS值(-0.68 eV)与实验观察到的Fe 2p的CLS值(-0.5 eV)吻合。理论计算的赤铁矿(001)晶面上吸附位点铁原子的Fe 2p的CLS值(-0.80 eV)与实验观察到的Fe 2p的CLS值(-0.8 eV)吻合。因此,水杨酸钠吸附在针铁矿表面时能够通过羧酸基团上一个氧原子和酚羟基上的氧原子与针铁矿(101)表面上的两个铁原子形成双齿双核(V)结构,而在赤铁矿(001)表面上,水杨酸钠中羧酸基团上一个氧原子和酚羟基上的氧原子与赤铁矿(001)表面上的一个铁原子形成了双齿单核(IV)结构。  相似文献   

9.
Adsorption of trimethyl phosphate (TMP) on well-characterized hematite, maghemite and goethite nanoparticles was studied by in situ DRIFT spectroscopy as a model system for adsorption of organophosphorous (OP) compounds on iron minerals. The iron minerals were characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), specific surface area, and pore size distribution. The minerals were found to consist of stoichimetrically and morphologically well-defined maghemite, hematite, and goethite nanoparticles. Analysis of in situ diffuse reflectance Fourier transform (DRIFT) spectroscopy shows that TMP bonds mainly to Lewis acid Fe sites through the O phosphoryl atom (-P═O-Fe) on hematite and maghemite. On goethite most TMP molecules bond to Br?nstedt acid surface OH groups and form hydrogen bonded surface complexes. The vibrational mode analysis and uptake kinetics suggest two main reasons for the observed trend of reactivity toward TMP (hematite > maghemite > goethite): (i) larger number of accessible Lewis acid adsorption sites on hematite; (ii) stronger interaction between the Lewis acid Fe sites and the phosphoryl O atom on TMP for hematite and maghemite compared to goethite with concomitant formation of surface coordinated TMP and dimethyl phosphate intermediates. As a result, on the oxides a surface oxidation pathway dominates during the initial adsorption, which results in the formation of surface methoxy and formate. In contrast, on goethite a slower hydrolysis pathway is identified, which eventually yields phosphoric acid. The observed trends of the reactivity and analysis of the corresponding surface structure and particle morphology suggest an intimate relation between the surface chemistry of exposed crystal facets on the iron minerals. These results are important to understand OP surface chemistry on iron minerals.  相似文献   

10.
Magnetite nanoparticles with tunable gold or silver shell   总被引:7,自引:0,他引:7  
Fe3O4 nanoparticles with size approximately 13 nm have been prepared successfully in aqueous micellar medium at approximately 80 degrees C. To make Fe3O4 nanoparticles resistant to surface poisoning a new route is developed for coating Fe3O4 nanoparticles with noble metals such as gold or silver as shell. The shell thickness of the core-shell particles becomes tunable through the adjustment of the ratio of the constituents. Thus, the route yields well-defined core-shell structures of size from 18 to 30 nm with varying proportion of Fe3O4 to the noble metal precursor salts. These magnetic nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), FTIR, differential scanning calorimetry (DSC), Raman and temperature-dependent magnetic studies.  相似文献   

11.
Aggregation is an economical and widely existing method to in hematite mineral processing. In order to achieve the aggregation of hematite particles, high-efficiency agents are required. In this work, the xanthan gum (XG) and Fe3+ were used to explore its aggregation effect on the fine hematite particles. The settling and adsorption experiments were conducted on hematite with XG in the absence and presence of Fe3+. The results show that it is difficult to settle hematite with XG alone, and XG exhibits excellent performance with the mass ratio of 2/1 (XG/ FeCl3) at pH 2–10 in the presence of Fe3+. Zeta potential measurements, Fourier transform infrared (FTIR), Microscope and X-ray photoelectron spectroscopy (XPS) analyses were performed to detect the underlying mechanism. The zeta potential, solution chemistry and FTIR analyses results show that the co-adsorption of XG, Fe(OH)2+, Fe(OH)2+ and Fe3+ is found on hematite surface through specific and electrostatic adsorption, respectively, and the hematite surface is also covered by Fe(OH)3(s) precipitation turned by Fe3+. XPS spectral investigations and microscope observations provide evidence in support of coordination interaction between ferric ions active sites and XG. In addition, the aggregation model of fine hematite particles suspension using XG in the presence of Fe3+ was drawn.  相似文献   

12.
MF3-doped/MgF2 systems with enhanced Lewis acidity are reported, which are obtained either by the conventional aqueous route of co-precipitation or, by a novel non-aqueous soft chemistry route. The latter gives outstanding high surface areas and exhibits potent Lewis acid catalyst behaviour. The doped solid metal fluorides with dopant metals such as Ga, In, Fe, V are discussed in terms of the modified Tanabe model, which is adopted for metal fluoride systems. The two doped but differently prepared systems are analysed according to their surface characteristics by BET surface area, pore-size distribution and XPS/XAES as well as for the solid state structure by scanning electron microscopy (SEM), XRD and -MAS-NMR. The surface properties were evaluated by photoacoustic IR-spectroscopy of pyridine adsorbates and selected catalytic reactions.The exemplarily investigated GaF3-doped/MgF2 system reveals modified intrinsic properties of the solid mixture culminating in very high surface areas of a structurally distorted mesoporous solid and electrostatic charge rearrangements causing increased Lewis acid sites.  相似文献   

13.
Thin films of silicon-doped Fe2O3 were deposited by APCVD (atmospheric pressure chemical vapor deposition) from Fe(CO)5 and TEOS (tetraethoxysilane) on SnO2-coated glass at 415 degrees C. HRSEM reveals a highly developed dendritic nanostructure of 500 nm thickness having a feature size of only 10-20 nm at the surface. Real surface area determination by dye adsorption yields a roughness factor of 21. XRD shows the films to be pure hematite with strong preferential orientation of the [110] axis vertical to the substrate, induced by silicon doping. Under illumination in 1 M NaOH, water is oxidized at the Fe2O3 electrode with higher efficiency (IPCE = 42% at 370 nm and 2.2 mA/cm2 in AM 1.5 G sunlight of 1000 W/m2 at 1.23 VRHE) than at the best reported single crystalline Fe2O3 electrodes. This unprecedented efficiency is in part attributed to the dendritic nanostructure which minimizes the distance photogenerated holes have to diffuse to reach the Fe2O3/electrolyte interface while still allowing efficient light absorption. Part of the gain in efficiency is obtained by depositing a thin insulating SiO2 interfacial layer between the SnO2 substrate and the Fe2O3 film and a catalytic cobalt monolayer on the Fe2O3 surface. A mechanistic model for water photooxidation is presented, involving stepwise accumulation of four holes by two vicinal iron or cobalt surface sites.  相似文献   

14.
Kinetics of adsorption of p-hydroxy benzoate and phthalate on hematite-electrolyte interface were investigated at a constant ionic strength, I = 5 x 10(-4) mol dm(-3), pH 5 and at three different temperatures. The state of equilibrium for the adsorption of p-hydroxy benzoate onto hematite surfaces was attained at 70 h, whereas it was 30 h for phthalate-hematite system. None of the three kinetics models (Bajpai, pseudo first order and pseudo second order) is applicable in the entire experimental time period; however, the pseudo second order kinetics model is considered to be better than the pseudo first order kinetics model in estimating the equilibrium concentration both the p-hydroxy benzoate-hematite and phthalate-hematite systems. The variation of adsorption density of p-hydroxy benzoate and phthalate onto hematite surfaces as a function of concentration of adsorbate was studied over pH range 5-9 at a constant ionic strength, I = 5 x 10(-4) mol dm(-3) and at constant temperature. The adsorption isotherms for both the systems were Langmuir in nature and the maximum adsorption density (Gamma(max)) of p-hydroxy benzoate is approximately 1.5 times more than that of phthalate on hematite at pH 5 and 30 degrees C in spite of an additional carboxylic group at ortho position in phthalate. This is due to the more surface area coverage by phthalate than that of p-hydroxy benzoate on hematite surface. The activation energy was calculated using Arrhenius equation and the activation energy for adsorption of p-hydroxy benzoate at hematite-electrolyte interface is approximately 1.8 times more than that of phthalate-hematite system. The negative Gibbs free energy indicates that the adsorption of p-hydroxy benzoate and phthalate on hematite surfaces is favourable. The FTIR spectra of p-hydroxy benzoate and phthalate after adsorption on hematite surfaces were recorded for obtaining the bonding properties of adsorbates. The phenolic nu(CO) appears at approximately 1271 cm(-1) after adsorption of p-hydroxy benzoate on hematite surfaces, which shifted by 10 cm(-1) to higher frequency region. The phenolic group is not deprotonated and is not participating in the surface complexation. The shifting of the nu(as)(COO-) and nu(s)(COO-) bands and non-dissolution of hematite suggest that the p-hydroxy benzoate and phthalate form outer-sphere surface complex with hematite surfaces in the pH range of 5-7.  相似文献   

15.
The standard electron-transfer rate constants ( k ( 0 )) are measured for redox processes of Fe versus Zn porphyrins in monolayers on Au(111); the former undergoes a metal-centered redox process (conversion between Fe (III) and Fe (II) oxidation states) whereas the latter undergoes a ring-centered redox process (conversion between the neutral porphyrin and the pi-cation radical). Each porphyrin contains three meso-mesityl groups and a benzyl thiol for surface attachment. Under identical solvent (propylene carbonate)/electrolyte (1.0 M Bu 4NCl) conditions, the Zn (II) center has a coordinated Cl (-) ion when the porphyrin is in either the neutral or oxidized state. In the case of the Fe porphyrin, two species are observed a low-potential form ( E l (0) approximately -0.6 V) wherein the metal center has a coordinated Cl (-) ion when it is in either the Fe (II) or Fe (III) state and a high-potential form ( E h (0) approximately +0.2 V) wherein the metal center undergoes ligand exchange upon conversion from the Fe (III) to Fe (II) states. The k ( 0 ) values observed for all of the porphyrins depend on surface concentration, with higher concentrations resulting in slower rates, consistent with previous studies on porphyrin monolayers. The k ( 0 ) values for the ring-centered redox process (Zn chelate) are 10-40 times larger than those for the metal-centered process (Fe chelate); the k ( 0 ) values for the two forms of the Fe porphyrin differ by a factor of 2-4 (depending on surface concentration), the Cl (-) exchanging form generally exhibiting a faster rate. The faster rates for the ring- versus metal-centered redox process are attributed to the participating molecular orbitals and their proximity to the surface (given that the porphyrins are relatively upright on the surface): a pi molecular orbital that has significant electron density at the meso-carbon atoms (one of which is the site of attachment of the linker to the surface anchoring thiol) versus a d-orbital that is relatively well localized on the metal center.  相似文献   

16.
FTIR spectral changes of bovine cytochrome c oxidase (CcO) upon ligand dissociation from heme a(3)() and redox change of the Cu(A)-heme a moiety (Cu(A)Fe(a)()) were investigated. In a photosteady state under CW laser illumination at 590 nm to carbonmonoxy CcO (CcO-CO), the C-O stretching bands due to Fe(a3)()(2+)CO and Cu(B)(1+)CO were identified at 1963 and 2063 cm(-)(1), respectively, for the fully reduced (FR) state [(Cu(A)Fe(a)())(3+)Fe(a3)()(2+)Cu(B)(1+)] and at 1965 and 2061 cm(-)(1) for the mixed valence (MV) state [(Cu(A)Fe(a)())(5+)Fe(a3)()(2+)Cu(B)(1+)] in H(2)O as well as in D(2)O. For the MV state, however, another band due to Cu(B)(1+)CO was found at 2040 cm(-)(1), which was distinct from the alpha/beta conformers in the spectral behaviors, and therefore was assigned to the (Cu(A)Fe(a)())(4+)Fe(a3)()(3+)Cu(B)(1+)CO generated by back electron transfer. The FR-minus-oxidized difference spectrum in the carboxyl stretching region provided two negative bands at 1749 and 1737 cm(-)(1) in H(2)O, which were apparently merged into a single band with a band center at 1741 cm(-)(1) in D(2)O. Comparison of these spectra with those of bacterial enzymes suggests that the 1749 and 1737 cm(-)(1) bands are due to COOH groups of Glu242 and Asp51, respectively. A similar difference spectrum of the carboxyl stretching region was also obtained between (Cu(A)Fe(a)())(3+)Fe(a3)()(2+)Cu(B)(1+)CO and (Cu(A)Fe(a)())(5+)Fe(a3)()(2+)Cu(B)(1+)CO. The results indicate that an oxidation state of the (Cu(A)Fe(a)()) moiety determines the carboxyl stretching spectra. On the other hand, CO-dissociated minus CO-bound difference spectra in the FR state gave rise to a positive and a negative peaks at 1749 and 1741 cm(-)(1), respectively, in H(2)O, but mainly a negative peak at 1735 cm(-)(1) in D(2)O. It was confirmed that the absence of a positive peak is not caused by slow deuteration of protein. The corresponding difference spectrum in the MV state showed a significantly weaker positive peak at 1749 cm(-)(1) and an intense negative peak at 1741 cm(-)(1) (1737 cm(-)(1) in D(2)O). The spectral difference between the FR and MV states is explained satisfactorily by the spectral change induced by the electron back flow upon CO dissociation as described above. Thus, the changes of carboxyl stretching bands induced both by oxidation of (Cu(A)Fe(a)()) and dissociation of CO appear at similar frequencies ( approximately 1749 cm(-)(1)) but are ascribed to different carboxyl side chains.  相似文献   

17.
Dibenzodioxin adsorption/desorption on solid surfaces is an important issue associated with the formation, adsorption, and emission of dioxins. Dibenzodioxin adsorption/desorption behaviors on inorganic materials (amorphous/mesoporous silica, metal oxides, and zeolites) were investigated using in situ FT-IR spectroscopy and thermogravimetric (TG) analysis. Desorption temperatures of adsorbed dibenzodioxin are very different for different kinds of inorganic materials: approximately 200 degrees C for amorphous/mesoporous silica, approximately 230 degrees C for metal oxides, and approximately 450 degrees C for NaY and mordenite zeolites. The adsorption of dibenzodioxin can be grouped into three categories according to the red shifts of the IR band at 1496 cm(-1) of the aromatic ring for the adsorbed dibenzodioxin: a shift of 6 cm(-1) for amorphous/mesoporous silica, a shift of 10 cm(-1) for metal oxides, and a shift of 14 cm(-1) for NaY and mordenite, suggesting that the IR shifts are proposed to associated with the strength of the interaction between adsorbed dibenzodioxin and the inorganic materials. It is proposed that the dibenzodioxin adsorption is mainly via the following three interactions: hydrogen bonding with the surface hydroxyl groups on amorphous/mesoporous silica, complexation with Lewis acid sites on metal oxides, and confinement effect of pores of mordenite and NaY with pore size close to the molecular size of dibenzodioxin.  相似文献   

18.
Spectroscopic and electrochemical characterizations of ferrocene- and biferrocene-functionalized terpyridine octanethiolate monolayer-protected clusters were investigated and reported. The electrochemical measurements of Ru2+ coordinated with 4'-ferrocenyl-2,2':6',2' '-terpyridine and 4'-biferrocenyl-2,2':6',2' '-terpyridine complexes were dominated by the Ru2+/Ru3+ redox couple (E(1/2) at approximately 1.3 V), Fe(2+)/Fe(3+) redox couples (E(1/2) from approximately 0.6 to approximately 0.9 V), and terpy/terpy-/terpy2- redox couples (E(1/)(2) at ca. -1.2 and ca. -1.4 V). The substantial appreciable variations detected in the Ru2+/Ru3+ and Fe2+/Fe3+ oxidation potentials indicate that there is an interaction between the Ru2+ and Fe2+ metal centers. The coordination of the Ru2+ metal center with 4'-ferrocenyl-2,2':6',2' '-terpyridine and 4'-biferrocenyl-2,2':6',2' '-terpyridine leads to an intense 1[(d(pi)Fe)6] --> 1[d(pi)Fe)5(pi*terpyRu)1] transition in the visible region. The 1[(d(pi)Fe)6] -->1[d(pi)Fe)5(pi*terpyRu)1] transition observed at approximately 510 nm revealed that there was a qualitative electronic coupling between metal centers. The coordination of the Ru2+ transition metal center lowers the energy of the pi*terpy orbitals, causing this transition.  相似文献   

19.
2,2'-Bis[2-(1-propylbenzimidazol-2-yl)]biphenyl), 4, and its bis complexes with Fe(II) and Mn(II) have been prepared and characterized structurally and spectroscopically. Ligand 4 adopts an open, "trans" conformation in the solid state with the benzimidazole (BzIm) groups on opposite sides of the biphenyl unit. In its complexes with metal ions, a "cis" conformation is observed, and 4 behaves as a geometrically constraining bidentate ligand with four planar groups connected by three "hinges". Reaction of 4 with Fe(II) or Mn(II) yielded isomorphous crystals (space group Pnn2) of Fe(II)(4)2.(ClO4)2 and Mn(II)(4)2.(ClO4)2, in which the M(II)(4)2 cations exhibit distorted-tetrahedral coordination geometries (N-M-N angles, 109 +/- 11 degrees ) enforced by rigid, chiral nine-membered M(4) rings in the twist-boat-boat conformation. Individually, the cations show R,R or S,S stereochemistry, and the crystals are racemates. Mn(II)(4)2.(ClO4)2 exhibits a quasi-reversible Mn(II) --> Mn(III) oxidation at E(1/2) = 0.64 V; the corresponding Fe(II) --> Fe(III) oxidation occurs at E(1/2) = 1.76 V. The electrochemical stability of the Fe(III) oxidation state in this system suggests the possibility of isolating an unusual pseudotetrahedral Fe(III)N(BzIm)(4) species. Ultraviolet spectra of the iron and manganese complexes are dominated by absorptions of the ligand 4 blue-shifted by approximately 2000-3000 cm(-1). Ligand-field absorptions were observed for the Fe(II) complex; those for the Mn(II) complex were obscured by tailing ultraviolet absorptions. Electron paramagnetic resonance and magnetic susceptibility measurements are consistent with a high-spin Mn(II) complex, while for the Fe(II) complex, the falloff of the magnetic moment with decreasing temperature is indicative of zero-field splitting with D approximately 4 cm(-1).  相似文献   

20.
Low temperature electron paramagnetic resonance (EPR) spectroscopy with frequencies between 95 and 345 GHz and magnetic fields up to 12 T have been used to study radicals and metal sites in proteins and small inorganic model complexes. We have studied radicals, Fe, Cu and Mn containing proteins. For S = 1/2 systems, the high frequency method can resolve the g-value anisotropy. It was used in mouse ribonucleotide reductase (RNR) to show the presence of a hydrogen bond to the tyrosyl radical oxygen. At 285 GHz the type 2 Cu(II) signal in the complex enzyme laccase is clearly resolved from the Hg(II) containing laccase peroxide adduct. For simple metal sites, the systems over S = 1/2 can be described by the spin Hamiltonian: H(S) = BgS + D[Sz2 - S(S + 1)/3 + E/D (Sx2 - Sy2)]. From the high frequency EPR the D-value can be determined directly by, (I) shifts of g(eff) for half-integer spin systems with large D-values as observed at 345 GHz on an Fe(II)-NO-EDTA complex, which is best described as S = 3/2 system with D = 11.5 cm(-1), E = 0.1 cm(-1) and gx = gy = gz = 2.0; (II) measuring the outermost signal, for systems with small D values, distant of (2S - 1) x absolute value(D) from the center of the spectrum as observed in S= 5/2 Fe(III)-EDTA. In Mn(II) substituted mouse RNR R2 protein the weakly interacting Mn(II) at X-band could be observed as decoupled Mn(II) at 285 GHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号