首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Poly(ethylene glycol)-b-polyphosphoester (PEG-b-PPE) block copolymer nanoparticles are promising carriers for poorly water soluble drugs. To enhance the drug loading capacity and efficiency of such micelles, a strategy was investigated for increasing the lipophilicity of the PPE block of these PEG-b-PPE amphiphilic copolymers. A PEG-b-PPE copolymer bearing pendant vinyl groups along the PPE block was synthesized and then modified by thiol-ene click reaction with thiols bearing either a long linear alkyl chain (dodecyl) or a tocopherol moiety. Ketoconazole was used as model for hydrophobic drugs. Comparison of the drug loading with PEG-b-PPE bearing shorter pendant groups is reported evidencing the key role of the structure of the pendant group on the PPE backbone. Finally, a first evidence of the biocompatibility of these novel PEG-b-PPE copolymers was achieved by performing cytotoxicity tests. The PEG-b-PPE derived by tocopherol was evidenced as particularly promising as delivery system of poorly water-soluble drugs.  相似文献   

2.
Capillary electrophoretic separation of 60 mer single-stranded DNA (ssDNA) and a single-base-substituted ssDNA was demonstrated using a size- and composition-controlled poly(ethylene glycol)-oligodeoxyribonucleotide block copolymer (PEG-b-ODN) as an affinity ligand. Under appropriate conditions, PEG-b-ODN and ssDNA with a complementary sequence formed a reversible complex via hybridization during the electrophoresis, while the copolymer did not interact with the single-base-substituted ssDNA. The copolymer's PEG length determined the electrophoretic mobility of the ssDNA; upon formation of the complex, the electrically neutral PEG added hydrodynamic friction to ssDNA. Simultaneously using two types of PEG-b-ODN copolymers whose PEG segments were of different lengths, we achieved the complete separation of the 60 mer ssDNA, its single-base-substituted ssDNA, and impurities. This method was sensitive enough to quantify a slight amount (approximately 1%) of the single-base-substituted ssDNA. The present results suggest that our approach is applicable to quantitative detection of minor genotypes.  相似文献   

3.
To prepare intermediary layer crosslinked micelles, a photocrosslinkable amphiphilic ABC triblock copolymer, poly(ethylene glycol)-b-poly(2-cinnamoyloxyethyl methacrylate)-b-poly(methyl methacrylate) (PEG-PCEMA-PMMA), was synthesized and its micellar characteristics were investigated. The triblock copolymer of PEG-b-poly(2-hydroxyethyl methacrylate)-b-PMMA (PEG-PHEMA-PMMA) (M= 9800 g/mol, Mw/Mn = 1.33) was first polymerized by activators generated by electron transfer (AGET) atom transfer radical polymerization (ATRP) using a PEG macroinitiator in a mixed solvent of anisole/2-isopropanol (3/1 v/v). The middle block of the copolymer was then functionalized with cinnamoyl chloride. The degrees of polymerization of the PEG, PHEMA, and PMMA blocks were 113, 18 and 21, respectively. The critical micelle concentration (CMC) of the PEG-PCEMA-PMMA was 0.011 mg/mL. The PEG-PCEMA-PMMA micelles were spherically shaped with an average diameter of 43 nm. The intermediary layer of the PEG-PCEMA-PMMA micelles was crosslinked by UV irradiation. Not all of the cinnamate groups underwent photocrosslinking probably due to a lack of other cinnamate groups in their immediate vicinity. However, the degree of photocrosslinking of the intermediary layer of the PEG-PCEMA-PMMA micelles was sufficient to give excellent colloidal stability, even in different external environments.  相似文献   

4.
Well-defined amphiphilic block copolymers composed of hydrophilic and hydrophobic blocks linked through an acid-labile acetal bond were synthesized directly by RAFT polymerization using a new poly(ethylene glycol) (PEG) macroRAFT agent modified with an acid-labile group at its R-terminal. The new macroRAFT agent was used for polymerization of poly(t-butyl methacrylate) (PtBMA) or poly(cholesterol-methacrylate) (PCMA) to synthesize well-defined block copolymers with a PEG block sheddable under acidic conditions. The chain extension polymerization kinetics showed known traits of RAFT polymerization. The molecular weight distributions of the copolymers prepared using the new macroRAFT agent remained below 1.2 during the polymerizations and the molecular weight of the copolymers was linearly proportional to monomer conversions. The acid-catalyzed hydrolysis behavior of the PEG-macroRAFT agent and the PEG-b-PtBMA (Mn = 13,600 by GPC, PDI = 1.10) was studied by GPC, 1H NMR and UV–vis spectroscopy. The half-life of acid-hydrolysis was 70 min at pH 2.2 and 92 h at pH 4.0. The potential use of the pH-labile shedding behavior of the copolymers was demonstrated by conjugating a thiol-modified siRNA to ω-pyridyldisulfide modified PEG-b-PCMA. The resultant PEG-b-PCMA-b-siRNA triblock modular polymer released PCMA-b-siRNA segment in acidic and siRNA segment in reductive conditions, as confirmed by polyacrylamide gel electrophoresis.  相似文献   

5.
A pH-responsive PEGylated nanogel was successfully prepared by means of emulsion copolymerization of 2-(N,N-diethylamino)ethyl methacrylate (AMA) with heterobifunctional poly(ethylene glycol) (PEG) bearing a 4-vinylbenzyl group at the α-end and a lactose moiety at the ω-end in the presence of potassium persulfate and ethyleneglycol dimethacrylate as a cross-linker. Polyplex micelle composed of PEG-block-poly(l-lysine) copolymer and plasmid DNA (PEG-b-PLL/pDNA) exhibited a far more efficient transfection ability in the presence of lac-nanogel-8k-1.0% (PEG, M n = 8000; cross-linking density, 1.0%) than the PEG-b-PLL/pDNA polyplex micelle alone (in the absence of lac-nanogel-8k-1.0%), suggesting that an appreciable fraction of lac-nanogel-8k-1.0% along with the PEG-b-PLL/pDNA polyplex micelle is taken up into the HuH-7 cells through the asialoglycoprotein receptor-mediated endocytosis process mediated by the cluster of a large number of lactose moieties on the surface of lac-nanogel-8k-1.0%, followed by the effective disruption of the endosome by the buffer effect of the unprotonated PAMA core in lac-nanogel-8k-1.0%. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
A critical requirement toward the clinical use of nanocarriers in drug delivery applications is the development of optimal biointerfacial engineering procedures designed to resist biologically nonspecific adsorption events. Minimization of opsonization increases blood residence time and improves the ability to target solid tumors. We report the electrostatic self-assembly of polyethyleneimine-polyethylene glycol (PEI-PEG) copolymers onto porous silica nanoparticles. PEI-PEG copolymers were synthesized and their adsorption by self-assembly onto silica surfaces were investigated to achieve a better understanding of structure-activity relationships. Quartz-crystal microbalance (QCM) study confirmed the rapid and stable adsorption of the copolymers onto silica-coated QCM sensors driven by strong electrostatic interactions. XPS and FT-IR spectroscopy were used to analyze the coated surfaces, which indicated the presence of dense PEG layers on the silica nanoparticles. Dynamic light scattering was used to optimize the coating procedure. Monodisperse dispersions of the PEGylated nanoparticles were obtained in high yields and the thin PEG layers provided excellent colloidal stability. In vitro protein adsorption tests using 5% serum demonstrated the ability of the self-assembled copolymer layers to resist biologically nonspecific fouling and to prevent aggregation of the nanoparticles in physiological environments. These results demonstrate that the electrostatic self-assembly of PEG copolymers onto silica nanoparticles used as drug nanocarriers is a robust and efficient procedure, providing excellent control of their biointerfacial properties.  相似文献   

7.
Fullerene (C60), the third carbon allotrope, has shown great potential in photoelectric materials and drug delivery. However, the low solubility of C60 in polar solvents, especially in water, is the major limiting factor for further applications. The use of ultrasound and amphiphilic block copolymers, poly(ethylene glycol)-block-poly(4-vinylpyridine) (PEG-b-P4VP), helped to disperse C60 in acidic aqueous solutions. As characterized by dynamic light scattering, transmission electron microscopy, and UV-visible spectroscopy, the C60 colloids had a core-shell structure with C60 aggregated in the micellar cores. The photosensitized generation of singlet oxygen using C60-bound polymer micelle was confirmed by the iodide method. More importantly, C60 and metalloporphyrin complexes could be synthesized by the self-assembly between PEG-b-P4VP/C60 micelle and metalloporphyrin. The stability of metalloporphyrin increased in the presence of the PEG-b-P4VP/C60 micelle. This study provides a method for the solubilization of C60 with many potential applications in biomedicals and photovoltaics.  相似文献   

8.
A series of well‐defined amphiphilic triblock copolymers, poly(ethylene glycol)‐b‐poly(tert‐butyl acrylate)‐b‐poly(2‐hydroxyethyl methacrylate) (PEG‐b‐PtBA‐b‐PHEMA), were synthesized via successive atom transfer radical polymerization (ATRP). ATRP of tBA was first initiated by PEG‐Br macroinitiator using CuBr/N,N,N′,N″,N′″‐pentamethyldiethylenetriamine as catalytic system to give PEG‐b‐PtBA diblock copolymer. This copolymer was then used as macroinitiator to initiate ATRP of HEMA, which afforded the target triblock copolymer, PEG‐b‐PtBA‐b‐PHEMA. The critical micelle concentrations of obtained amphiphilic triblock copolymers were determined by fluorescence spectroscopy using N‐phenyl‐1‐naphthylamine as probe. The morphology and size of formed aggregates were investigated by transmission electron microscopy and dynamic light scattering, respectively. Finally, an acid‐sensitive PEG‐b‐PtBA‐b‐P(HEMA‐CAD) prodrug via cis‐aconityl linkage between doxorubicin and hydroxyls of triblock copolymers with a high drug loading content up to 38%, was prepared to preliminarily explore the application of triblock copolymer in drug delivery. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
In diblock copolymers, the constraining effects of different stereochemical structure of high-Tm block on crystallization and melting behaviors of other constituent are supposed to be different. In this work, PEG-b-PDLLA and PEG-b-PLLA were synthesized, and crystallization kinetics, crystalline structure, melting behaviors of PEG blocks and morphology development in these systems were evaluated. Compared to those connected to PLLA, PEG-b-PDLLA exhibited lower crystallization rates, implying that connectivity of amorphous chain exerted more pronounced effect on crystallization rate of PEG than that of steric hindrance of PLLA crystallites. While all PEG-b-PDLLA samples showed a single endothermic peak during heating process, multiple melting peaks were observed in PEG-b-PLLA associated with composition, crystallization temperature and cooling rate of PLLA. A lamellar structure was formed by the crystallization of PEG in all PEG-b-PDLLA, however, when PEG-b-PLLA crystallized at room temperature directly, unexpected results occurred: lamellar for diblock copolymers with 31.5 and 48.0 wt% PLA or cylindrical structure for the diblock copolymers with 56.1 and 63.8 wt% PLA. Depending on composition, PEG-b-PLLA created one or two types of lamellar stacks after sequential crystallization of PLLA and PEG. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 455–465  相似文献   

10.
Poly(ethylene glycol)-block-poly(γ-benzyl L-glutamate)-graft-poly(ethylene glycol) (PEG-b-PBLG-g-PEG) copolymer was synthesized by the ester exchange reaction of poly(γ-benzyl L-glutamate)-block-poly(ethylene glycol) (PBLG-block-PEG) copolymer with PEG chain, and PBLG-block-PEG copolymer was prepared by a standard N-carboxyl-γ-benzyl-L-glutamate anhydride (NCA) method. Nuclear magnetic resonance (NMR) spectroscopy was used to confirm the components of PBLG-block-PEG and PEG-b-PBLG-g-PEG. The self-association behaviors of PBLG-block-PEG and PEG-b-PBLG-g-PEG in ethanol were investigated by transmission electron microscopy (TEM), dynamic laser scattering (DLS), and viscometry. The experimental results revealed that the different molecular structures could exert marked effects on the self-assembly behaviors of PBLG-block-PEG and PEG-b-PBLG-g-PEG in ethanol. PBLG-block-PEG and PEG-b-PBLG-g-PEG could self-assemble to form polymeric micelles with a core-shell structure in the shapes of plump spherical and regular rice-like, respectively. Effects of the introduction of PBLG homopolymer on the average particle diameter of the micelles of PBLG-block-PEG and PEG-b-PBLG-g-PEG and influence of testing temperature on the critical micelle concentration of different copolymers were studied.  相似文献   

11.
The pH-responsive double hydrophilic block copolymer poly(ethylene glycol)-b-poly(methacylic acid-co-4-vinyl benzylamine hydrochloride salt) (PEG-b-PMAA/PVBAHS) was synthesized. A series of PEG-b-PMAA/PVBAHS with different molecule weights and compositions were characterized by IR, 1H-NMR, elemental analysis and TGA. With different MAA/VBAHS ratio, the PEG-b-PMAA/PVBAHS copolymers had the different isoelectric point (IEP). Supermolecular structures of the block copolymers could be formed by the interionic interactions at different solution pH. Experiment results showed that the structures of the pH-responsive copolymers in aqueous solution could be changed at different pH environments. The aggregation of this double hydrophilic block copolymer in aqueous solution was determined by both of solution pH and copolymer composition.  相似文献   

12.
Comb‐like amphiphilic poly(poly((lactic acid‐co‐glycolic acid)‐block‐poly(ethylene glycol)) methacrylate (poly((PLGA‐b‐PEG)MA)) copolymers were synthesized by radical polymerization. (PLGA‐b‐PEG)MA macromonomer was prepared by ring‐opening bulk polymerization of DL ‐lactide and glycolide using purified poly(ethylene glycol) monomethacrylate (PEGMA) as an initiator. (PLGA‐b‐PEG)MA macromonomer was copolymerized with PEGMA and/or acrylic acid (AA) by radical polymerization to produce comb‐like amphiphilic block copolymers. The molecular weight and chemical structure were investigated by GPC and 1H NMR. Poly((PLGA‐b‐PEG)MA) copolymer aqueous solutions showed gel–sol transition behavior with increasing temperature, and gel‐to‐sol transition temperature decreased as the compositions of the hydrophilic PEGMA and AA increased. The gel‐to‐sol transition temperature of the terpolymers of the poly((PLGA‐b‐PEG)MA‐co‐PEGMA‐co‐AA) also decreased when the pH was increased. The effective micelle diameter obtained from dynamic light scattering increased with increasing temperature and with increasing pH. The critical micelle concentration increased as the composition of the hydrophilic monomer component, PEGMA and AA, were increased. The spherical shape of the hyperbranched polymers in aqueous environment was observed by atomic force microscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1954–1963, 2008  相似文献   

13.
Pyridyldisulfide (PDS) functionalized telechelic polymers of oligo(ethyleneglycol) acrylate (PEG‐A) and their amphiphilic triblock copolymers with styrene (St) were synthesized directly by reversible addition‐fragmentation chain transfer (RAFT) polymerization using a new bifunctional RAFT agent, S,S‐bis[α,α′‐dimethyl‐α″‐(2‐pyridyl disulfide) ethyl acetate] trithiocarbonate (BDPET). The homopolymerization of PEG‐A was found to be well controlled using BDPET (PDI < 1.2). The ABA triblock copolymers poly(PEG‐A)‐b‐poly(St)‐b‐poly(PEG‐A) with narrow molecular weight distribution (PDI < 1.25) were synthesized using poly(PEG‐A) as a macro‐RAFT agent. UV‐vis spectroscopic analysis revealed that 85 mol % of poly(PEG‐A) and 78 mol % of poly(PEG‐A)‐b‐poly(St)‐b‐poly(PEG‐A) retained PDS end group functionality. Micelles were observed to form from poly(PEG‐A)‐b‐poly(St)‐b‐poly(PEG‐A). The presence of PDS groups within the micelle corona was evidenced by UV‐vis spectroscopy and fluorescence spectroscopy. The PDS groups within the corona were then used to functionalize the micelles with a thiol group bearing model peptide, reduced glutathione, and a thiol modified fluorophore, rhodamine B, under mild reaction conditions. UV‐vis and fluorescence spectrocopies revealed that approximately 80% PDS groups from the amphiphilic copolymer were tethered within the micelle coronas and accessible to glutathione and fluorophore attachment. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 899–912, 2009  相似文献   

14.
A novel amphiphilic copolymer poly(ethylene glycol)-block-poly(N,N-dimethylamino-2-ethylmethacrylate)-blockpoly[6-(4-methoxy-azobenzene-4’-oxy) hexyl methacrylate](PEG-b-PDMAEMA-b-PMMAzo) was prepared by ATRP polymerization.The self-assembly and responsive behaviors were investigated by SEM,TEM,LLS and UV-Vis spectra.The results indicated that the copolymers can self-assemble into spherical structures in aqueous media.The aggregate size can be tuned by pH and temperature.The trans-cis isomerization behavior of the formed aggregates was also examined.Upon irradiation with a linear polarized light,the elongation degree of the aggregates was increased with the irradiation time.  相似文献   

15.
吴飞鹏 《高分子科学》2012,30(5):770-776
Thermo-responsive block copolymers poly(ethylene glycol)-block-poly(N-acryloyl-2,2-dimethyl-1,3-oxazolidine), PEG-b-PADMO,based on linear PEG were prepared via a versatile reversible addition-fragmentation chain transfer(RAFT) polymerization.PEG22(Mw = 1000) was used as the hydrophilic component,whose dehydration was the main driving force for the phase transition of these copolymers,as demonstrated by the 1H-NMR spectra.Their lower critical solution temperatures(LCSTs) could be tuned in the range of 20℃to 35℃,by adjusting the degree of polymerization(DP) of PADMO between 14-27.Furthermore,a sharp phase transition at ca.33℃,close to the physiological temperature with minimal hysteresis,was observed for the PEG22-b-PADMO14 copolymer.Moreover,excellent reversibility and reproducibility were displayed for the same copolymer over 10 cycles of repeated temperature change between 25℃(below the LCST) and 40℃(above the LCST).  相似文献   

16.
Shell cross-linked (SCL) micelles with amine-functional coronas have been constructed in aqueous solution by exploiting the micellar self-assembly of new thermo-responsive ABC triblock copolymers. These copolymers were prepared via atom transfer radical polymerisation (ATRP) in convenient one-pot syntheses and comprised a thermo-responsive core-forming poly(propylene oxide) [PPO] block, a cross-linkable central poly(glycerol monomethacrylate) [GMA] block and an amine-functional outer block based on either poly(2-(dimethylamino)ethyl methacrylate) [DMA] or poly([2-(methacryloyloxy)ethyl]trimethyl ammonium chloride) [QDMA]. DMF GPC analysis indicated an Mn of 17,700 and an Mw/Mn of 1.46 for the PPO-PGMA-PDMA triblock copolymer. The DMA residues of the PPO-PGMA-PDMA triblock copolymer were reacted with methyl iodide to prepare copolymers with differing degrees of quaternisation. Each triblock copolymer dissolved molecularly in aqueous solution at 5 °C and formed micelles with amine-functional coronas above a critical micelle temperature (CMT) of around 12 °C, which corresponded closely to the cloud point of the PPO macro-initiator. Cross-linking of the GMA residues in the inner shell using divinyl sulfone produced SCL micelles that remained intact at 5 °C, i.e. below the cloud point of the core-forming PPO block. Aqueous electrophoresis studies confirmed that these SCL micelles had considerable cationic surface charge, as expected. The cationic SCL micelles were adsorbed onto a near-monodisperse anionic silica sol, which was used as a model colloidal substrate. Thermogravimetric analyses indicated SCL micelle mass loadings of 6.1-15.5 wt.%, depending on the initial micelle concentration. Aqueous electrophoresis studies confirmed that surface charge reversal occurred on adsorption of the SCL micelles and scanning electron microscopy studies revealed the presence of SCL micelles on the silica particles.  相似文献   

17.
We report on the fabrication of fluorescent and multicolor probes for Zn2+ ions and temperature from a mixture of three types of fluorophore-labeled responsive block copolymers in aqueous media. Quinoline-based Zn2+-recognizing fluorescent monomer ZQMA, red-emitting rhodamine B-based monomer RhBEA, and blue-emitting coumarin derivative Coum-OH, were synthesized first. A ZQMA-labeled well-defined double hydrophilic block copolymer (DHBC), PEG-b-P(MEO2MA-co-ZQMA), was synthesized via reversible addition-fragmentation chain-transfer (RAFT) polymerization of 2-(2-methoxyethoxy)ethyl methacrylate (MEO2MA) and ZQMA by utilizing a PEG-based macroRAFT agent. Following similar procedures, PEG-b-P(St-co-RhBEA) amphiphilic diblock copolymer and PEG-b-P(MEO2MA-co-Coum) DHBC were also synthesized, where P(St-co-RhBEA) was a RhBEA-labeled polystyrene (PS) block. At room temperature in aqueous solution, almost nonfluorescent PEG-b-P(MEO2MA-co-ZQMA) can effectively bind Zn2+ ions, leading to prominent green fluorescence enhancement due to the coordination of ZQMA with Zn2+ ions. However, by mixing red-emitting PEG-b-P(St-co-RhBEA) and blue-emitting PEG-b-P(MEO2MA-co-Coum) with PEG-b-P(MEO2MA-co-ZQMA) at an appropriate ratio, three color transitions could be observed. In the absence of Zn2+ ions, a mixed pink fluorescent originating from Coum and RhBEA was observed; upon the addition of a certain amount of Zn2+ ions, the green fluorescence enhanced dramatically, leading to a white fluorescence readout. By further increasing the amount of Zn2+ ions, the green fluorescence further enhanced and overwhelmed the blue and red emissions, leading to a green-dominant mixed-fluorescence emission. In addition, upon increasing the temperature, the fluorescence of Coum decreased considerably due to the fluorescence-resonance energy transfer (FRET) between Coum and ZQMA moieties. In this way, a ratiometric fluorescent thermometer can be constructed.  相似文献   

18.
The synthesis, micelle formation, and bulk properties of semifluorinated amphiphilic poly(ethylene glycol)‐b‐poly(pentafluorostyrene)‐g‐cubic polyhedral oligomeric silsesquioxane (PEG‐b‐PPFS‐g‐POSS) hybrid copolymers is reported. The synthesis of amphiphilic PEG‐b‐PPFS block copolymers are achieved using atom transfer radical polymerization (ATRP) at 100 °C in trifluorotoluene using modified poly(ethylene glycol) as a macroinitiator. Subsequently, a proportion of the reactive para‐F functionality on the pentafluorostyrene units was replaced with aminopropylisobutyl POSS through aromatic nucleophilic substitution reactions. The products were fully characterized by 1H‐NMR and GPC. The products, PEG‐b‐PPFS and PEG‐b‐PPFS‐g‐POSS, were subsequently self‐assembled in aqueous solutions to form micellar structures. The critical micelle concentrations (cmc) were estimated using two different techniques: fluorescence spectroscopy and dynamic light scattering (DLS). The cmc was found to decrease concomitantly with the number of POSS particles grafted per copolymer chain. The hydrodynamic particle sizes (Rh) of the micelles, calculated from DLS data, increase as the number of POSS molecules grafted per copolymer chain increases. For example, Rh increased from ~60 nm for PEG‐b‐PPFS to ~80 nm for PEG‐b‐PPFS‐g‐POSS25 (25 is the average number of POSS particles grafted copolymer chain). Static light scattering (SLS) data confirm that the formation of larger micelles by higher POSS containing copolymers results from higher aggregation numbers (Nagg), caused by increased hydrophobicity. The Rg/Rh values, where Rg is the radius of gyration calculated from SLS data, are consistent with a spherical particle model having a core‐shell structure. Thermal characterization by differential scanning calorimetry (DSC) reveals that the grafted POSS acts as a plasticizer; the glass transition temperature (Tg) of the PPFS block in the copolymer decreases significantly with increasing POSS content. Finally, the rhombohedral crystal structure of POSS in PEG‐b‐PPFS‐g‐POSS was verified by wide angle X‐ray diffraction measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 152–163, 2010  相似文献   

19.
For designing the responsive polymer brushes, and tuning the local and chemical surface responses to the external stimuli, the epitaxial single crystals were patterned by combination of bared surfaces of poly(ethylene glycol) (PEG) substrate, polymer homo-brushes constructed from poly(ethylene glycol)-b-polystyrene (PEG-b-PS) as well as poly(ethylene glycol)-b-poly(methyl methacrylate) (PEG-b-PMMA), and PEG-b-PS/PEG-b-PMMA mixed-brush channels. To achieve this target, various single crystals and epitaxial structures grown from dilute solutions through self-seeding approach were utilized as seeds to fabricate the next channels. The characteristics and morphologies of different channels were detectable by atomic force microscopy (AFM). The influence of chemical (solvent quality and interaction of substrate with different brushes) and physical (presence of brushes from another type in their vicinity) environments on crystallization was studied. Due to the effect of chemical environment, the PS brushes hampered the growth of PEG crystals at M n PS?=?10,000 g/mol. However, the PMMA brushes allowed PEG crystals to grow completely at M n PMMA =13,100 g/mol, and indicated their hindrance at higher molecular weights (here, M n PMMA?=?17,100 g/mol). It was feasible to neutralize the mentioned hindrance through fabricating the channels with brushes having the highest hindrance (M n PS?=?14,800 g/mol and M n PMMA?=?17,100 g/mol), and altering the physical environment from homo- to mixed-brush morphology. The characteristics (thickness, tethering density, and domain size) of developed channels from a certain material, in all arrangements and in various channels were in good agreement with those of corresponding non-epitaxial single crystals grown under the same conditions.  相似文献   

20.
《中国化学快报》2020,31(7):1931-1935
Amphiphilic block copolymers poly(ethylene glycol)-block-poly(N-3-(methylthio)propyl glycine) (PEG-b-PMeSPG) were synthesized via ring-opening polymerization of N-3-(methylthio)propyl glycine N-thiocarboxyanhydride (MeSPG-NTA) initiated by amino-terminated PEG. The self-assemblies of three PEG-b-PMeSPG copolymers with different PMeSPG block lengths were first prepared by nanoprecipitation method using THF and DMF, respectively, as the organic solvent, and their morphologies were studied by Cryo-EM and DLS. To prepare polymersomes loaded with glucose oxidase (GOx), double emulsion method followed by extrusion treatment was employed. The oxidation-responsive disruption of polymersomes was achieved upon the introduction of glucose because of the oxidants generated in-situ by GOx/glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号